$2^{ND}~2024~QUARTER-ANNUAL~WATER~QUALITY~MONITORING~REPORT$

SOUTHEAST LANDHOLDINGS, INCORPORATED C&D FACILITY GAINESVILLE, FLORIDA

June 10, 2024

2^{ND} 2024 QUARTER-ANNUAL WATER QUALITY MONITORING REPORT

SOUTHEAST LANDHOLDINGS, INCORPORATED C&D FACILITY GAINESVILLE, FLORIDA

June 10, 2024

performed for:

Florence C&D 3003 SE 15th Street Gainesville, Florida 32641-1414

performed by:

PAUL D. LAYMON, P.G. 3776 Cathedral Oaks Place North Jacksonville, Florida 32217

Paul D. Laymon, P.G. #1291

Mannannan

1503012-24GWMR.wpd

INTRODUCTION

The following is a Report of the Water Quality Monitoring event for the 2nd Quarter-Annual period of 2024 at the Florence C&D facility, located in Gainesville, Florida. This report has been produced to comply with the facility's Permit Number 70754-006-SO, for the referenced site.

FIELD ACTIVITIES

On May 23, 2024, sampling personnel mobilized to the site to conduct groundwater monitoring activities. Groundwater levels were collected at MW-1R, MW-2, MW-3, MW-3R, MW-4, CW-4, MW-5, MW-6, MW-7, and MW-8; as well as the temporary and assessment wells: TW-7, TW-8, and TW-11; and the off-site piezometers: P-13 and P-14. This event occurred following a period of somewhat lower than typical rainfall amounts. The stormwater ponds on the west and southwest side were retaining little water, which is used to interpolate groundwater flow in the unconsolidated zone.

GROUNDWATER FLOW

The water level data is provided in Table 1. It is noted that monitor wells MW-2, MW-3, MW-5, MW-6, MW-7, MW-8, P-13, and P-14 are screened in the unconsolidated sands, whereas MW-1R, MW-3R, CW-4, MW-4, TW-7, TW-8, and TW-11 are screened into the shallow rock zone beneath the unconsolidated sands. Based upon the data in Table 1, known field conditions, and historical groundwater elevation data, DOMINION has interpreted groundwater flow in these separated zones as represented on Figure 1. Groundwater flow in the shallow rock zone is across the west boundary of the edge of waste, toward the southwest. Groundwater flow in the unconsolidated deposits is also illustrated on this figure. Generally, recharge to this zone is from the southeast and discharge appears to be to the west.

With the placement of P-13 and P-14, greater detail is available regarding groundwater flow in the unconsolidated deposits on the north side of the site. It can now be identified that the water level in MW-8 is lower than those to the north/northeast and south. Groundwater in its vicinity, discharges to the west, into the pond, when pond levels are not excessively high. In the vicinity of

MW-7, groundwater appears to discharge to the northeast.

Another condition identified in this data, is the separation in the monitored zone at MW-1R. The original well was set in sandy soils whose base is at 14 feet below land surface (bls). Even though the well was 28 feet deep, the bottom 14 feet was clay. In an effort to monitor the shallow rock zone, the replacement well was set at 37 feet bls, with the bottom seven feet in largely void space filled with wet sand and lime clay with limestone fragments. Although the void space indicated the potential for significant groundwater, this well produces water at a very slow rate, possibly indicating that the void is isolated from the surrounding aquifer by the extensive clay deposits. This would also help explain the much lower water level in this well than in the former adjacent well and all other wells at the site.

Table 1. Groundwater Level Data (May 23, 2024)

Well Name	Reference Point	Screen Interval	Depth to Water	Groundwater
	Elevation			Elevation
MW-1R	118.16	79.2-89.2	16.86	101.30
MW-2	121.34	94.3-104.3	11.13	110.21
MW-3	119.94	92-102	12.60	107.34
MW-3R	119.51	83-93	13.00	106.51
MW-4	115.52	79.5-94.5	8.00	107.52
CW-4	119.57	79.6-89.6	12.09	107.48
MW-5	114.62	96.1-106.1	4.94	109.68
MW-6	123.99	90.5-100.5	13.25	110.74
MW-7	118.10	91.8-106.8	9.85	108.25
MW-8	117.02	88.0-98.0	9.14	107.88
TW-7	118.37	83.4-88.4	10.99	107.38
TW-8	115.86	80.9-85.9	8.40	107.46
TW-11	121.10	83-93	14.73	106.37
P-13	119.88	93.2-103.2	12.37	107.51
P-14	117.90	91.7-101.7	9.85	108.05

Measurements are in ft; elevations are in reference to NGVD

QUALITY ASSURANCE

Samples were collected by DOMINION personnel, in a manner that is consistent with the FDEP, Standard Operating Procedure, detailed in 62-160 of the Florida Administrative Code. Laboratory

analyses were performed by Eurofins, which is a NELAC certified laboratory. Laboratory analytical reports are provided in Attachment A.

ANALYSES

Groundwater samples from the monitor wells were analyzed for the parameters listed in Appendix 3.3 of the referenced permit. The compliance well, CW-4 was added to the monitoring program to track the concentrations of aluminum, total dissolved solids (TDS), sulfate (SO₄), and arsenic downgradient of the detection well, MW-4. Over the past events, arsenic concentrations have risen above its cleanup target level (CTL) and then fallen to below it in both the compliance and detection wells. More recently, sodium concentrations had risen in these same two wells and then also fallen to below the CTL. Evaluation monitoring (EM) had been conducted for sodium, as well as iron, sulfates, and TDS, by incorporating TW-7 and TW-8 into the monitoring program; as it had been previously for arsenic. Due to more than four sequential events with sodium concentrations below the CTL in the compliance well, evaluation monitoring for sodium was halted in 2021. On June 8, 2023, the FDEP requested that EM be re-initiated for the detections of Fe, SO₄, and TDS in MW-2, MW-3R, MW-4, CW-4, MW-5, MW-7, and MW-8. However, there were no detections of these analytes above background levels in MW-2 or MW-5 and MW-7 and MW-8 were not included in the permitted monitoring program until the new permit was issued on June 20, 2023. Since the new permit requires quarterly monitoring, this, along with the assessment work done for previous EM periods, will satisfy EM for MW3R, MW-4, and CW-4. For EM purposes, TW-7 and TW-11 were added to the monitoring well list for this and also the previous events.

As shown in Table 2, aluminum, arsenic, iron, sulfate, and TDS were detected above their respective cleanup target levels (CTL).

The aluminum CTL of 0.2 milligrams per liter (mg/l) was exceeded in the samples from MW-3R, TW-7, and the background well, with the highest concentrations in the MW-1R sample at 2.8 mg/l. The highest iron concentration was in the sample from MW-7 at 14 mg/l. The sample from the background well had a concentration of 11 mg/l. The iron CTL of 0.3 mg/l was exceeded in every sample except those from MW-2, MW-5, and MW-8.

Sulfate, which has a CTL of 250 mg/l was only exceeded in the shallow rock zone samples from MW-3R, CW-4, and TW-11. The highest concentration was in the TW-11 sample at 400 mg/l. The CTL for TDS of 500 mg/l was exceeded in all of the shallow rock well samples. It was also exceeded in the samples form MW-6, MW-7, and MW-8. Its highest concentration of 1800 mg/l was in the sample from TW-7.

Arsenic was elevated above its CTL of 0.01 mg/l in the sample from MW-8 at a concentration of 0.042 mg/l. Sodium was not detected above its CTL of 160 mg/l in any of the samples from this event.

RECOMMENDATIONS

As interpreted on the groundwater flow map, there is now documentation that indicates groundwater is migrating toward the site from the north and southeast. Monitor wells MW-2, MW-5, and MW-6 are interpreted as upgradient of the permitted landfill. Although downgradient of the landfill, MW-8 is also downgradient of the property to the north.

Arsenic was above its CTL in the sample from MW-8 for the second consecutive event. As documented by groundwater flow data, this elevated detection could be coming from the site or the property to the north. Downgradient of this well is documented to be the stormwater basin area in the northwest corner of the site. If this pond is retaining water during the next event, a sample of the surface water will be collected for arsenic.

Quarter-annual monitoring should continue with the following changes.

- The locations of MW-2 and MW-6 should be referred to as background for the unconsolidated zone.
- Monitoring at MW-5 should be discontinued.
- Monitoring of TW-7 and TW-8 should be discontinued and replaced with a 2-inch diameter well of approximately the same depth as these, not more than 25 feet south of the current location of TW-8.

Table 2. Analytical Summary (May 23, 2024)

Well #	Al	As	Fe	Na	Cl	SO ₄	TDS
vv en #	0.2 2	0.01^{1}	0.3 2	160 ¹	250 ²	250 ²	500 ²
MW-1R	2.8	0.0087	11	15	15	8.9	470
MW-2	0.087	0.0004u	0.12u	4.2	5.5	5.7	5.0u
MW-3R	0.28	0.0009i	3.0	51	31	260	1200
CW-4	0.089	0.0098	3.0	140	69	280	1300
MW-4	0.0049i	0.0089	4.3	140	7.2	27	1400
MW-5	0.094	0.0004u	0.16i	5.1	7.8	9.2	54
MW-6	0.10	0.0004i	1.1	15	7.5	1.1	900
MW-7	0.015i	0.0096	14	94	31	11	1400
MW-8	0.17	0.042	0.12u	120	49	77	1300
TW-7	0.35	0.0012i	2.3	98	6.3	86	1800
TW-8	0.029i	0.0081	1.1	91	43	240	1100
TW-11	0.047	0.001i	0.79	71	40	400	1400

all concentrations in mg/l

not analyzed for this constituent

below MDL u below PQL

bold

above applicable CTL Primary Drinking Water Standard Secondary Drinking Water Standard 2

ATTACHMENT A LABORATORY DATA

45678

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Paul Laymon Dominion, Inc. 3776 Cathedral Oak Place N Jacksonville, Florida 32217

Generated 6/7/2024 10:15:43 AM

JOB DESCRIPTION

1503.01

JOB NUMBER

670-40479-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701

Eurofins Orlando

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 6/7/2024 10:15:43 AM

Authorized for release by David Camacho, Senior Project Manager david.camacho@et.eurofinsus.com (321)282-6400

Client: Dominion, Inc. Project/Site: 1503.01

Laboratory Job ID: 670-40479-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	10
Surrogate Summary	34
QC Sample Results	35
QC Association Summary	55
Lab Chronicle	62
Certification Summary	67
Method Summary	68
Sample Summary	69
Chain of Custody	70
Receipt Checklists	72

Definitions/Glossary

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Indicates that the compound was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

J Estimated value; value may not be accurate.

U Indicates that the compound was analyzed for but not detected.

Metals

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description

J Estimated value; value may not be accurate.

U Indicates that the compound was analyzed for but not detected.

Glossary

report.
ер

Elisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit (Radiocnem

ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Orlando

Page 4 of 72 6/7/2024

Case Narrative

Client: Dominion, Inc.

Job ID: 670-40479-1

Project: 1503.01

Job ID: 670-40479-1 Eurofins Orlando

Job Narrative 670-40479-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/24/2024 6:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.9°C and 2.7°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 350.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 670-94270 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 350.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 670-94436 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 350.1: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with analytical batch 670-94561 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Ammonia (as N) in the MS/MSD was above the instrument calibration range. The data have been reported and gualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Orlando

Page 5 of 72 6/7/2024

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-1R Lab Sample ID: 670-40479-1

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	15		0.40	0.20	mg/L	1	_	300.0	Total/NA
Sulfate	8.9		1.0	0.50	mg/L	1		300.0	Total/NA
Iron	11		0.20	0.11	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Sodium	15		0.50	0.13	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Aluminum	2.8		0.040	0.0034	mg/L	1		200.8	Total
									Recoverable
Arsenic	0.0087		0.0040	0.00039	mg/L	1		200.8	Total
									Recoverable
Cadmium	0.00052	1	0.0010	0.00025	mg/L	1		200.8	Total
									Recoverable
Chromium	0.011		0.0020	0.00039	mg/L	1		200.8	Total
									Recoverable
Lead	0.0011	1	0.0020	0.00024	mg/L	1		200.8	Total
									Recoverable
Ammonia (as N)	0.12		0.020	0.014	mg/L	1		350.1	Total/NA
Total Dissolved Solids	470		5.0	5.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-2

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	5.5	J	0.40	0.20	mg/L	1	_	300.0	Total/NA
Nitrate as N	0.21	1	0.40	0.20	mg/L	1		300.0	Total/NA
Sulfate	5.7		1.0	0.50	mg/L	1		300.0	Total/NA
Sodium	4.2		0.50	0.13	mg/L	1		200.7 Rev 4.4	Total Recoverable
Aluminum _	0.087		0.040	0.0034	mg/L	1		200.8	Total Recoverable

Client Sample ID: MW-3R

Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac	D M	lethod	Prep Type
Chloride	31	0.40	0.20	mg/L		30	00.0	Total/NA
Sulfate	260	10	5.0	mg/L	10	30	00.0	Total/NA
Iron	3.0	0.20	0.11	mg/L	1	20	00.7 Rev 4.4	Total Recoverable
Sodium	51	0.50	0.13	mg/L	1	20	00.7 Rev 4.4	Total Recoverable
Aluminum	0.28	0.040	0.0034	mg/L	1	20	8.00	Total Recoverable
Arsenic	0.00094 I	0.0040	0.00039	mg/L	1	20	8.00	Total Recoverable
Chromium	0.0037	0.0020	0.00039	mg/L	1	20	00.8	Total Recoverable
Lead	0.00024 I	0.0020	0.00024	mg/L	1	20	8.00	Total Recoverable
Ammonia (as N)	3.9	0.40	0.28	mg/L	20	3	50.1	Total/NA
Total Dissolved Solids	1200	5.0	5.0	mg/L	1	S	M 2540C	Total/NA

Client Sample ID: MW-4

Analyte	Result Qu	alifier PQL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Chloride	7.2	0.40	0.20	mg/L	1	_	300.0	Total/NA	
Sulfate	27	1.0	0.50	mg/L	1		300.0	Total/NA	

This Detection Summary does not include radiochemical test results.

Eurofins Orlando

6/7/2024

Page 6 of 72

2

3

4

8

11

12

Lab Sample ID: 670-40479-2

Lab Sample ID: 670-40479-3

Lab Sample ID: 670-40479-4

4 4

14

Detection Summary

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-4 (Continued)

Lab Sample ID: 670-40479-4

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	4.3		0.20	0.11	mg/L	1	_	200.7 Rev 4.4	Total
									Recoverable
Sodium	140		0.50	0.13	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Aluminum	0.0049	I	0.040	0.0034	mg/L	1		200.8	Total
									Recoverable
Arsenic	0.0089		0.0040	0.00039	mg/L	1		200.8	Total
									Recoverable
Chromium	0.0025		0.0020	0.00039	mg/L	1		200.8	Total
									Recoverable
Total Dissolved Solids	1400		10	10	mg/L	1		SM 2540C	Total/NA

Client Sample ID: CW-4

Lab Sample ID: 670-40479-5

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	69		4.0	2.0	mg/L	10	_	300.0	Total/NA
Sulfate	280		10	5.0	mg/L	10		300.0	Total/NA
Iron	3.0		0.20	0.11	mg/L	1		200.7 Rev 4.4	Total
Sodium	140		0.50	0.13	mg/L	1		200.7 Rev 4.4	Recoverable Total Recoverable
Aluminum	0.089		0.040	0.0034	mg/L	1		200.8	Total Recoverable
Arsenic	0.0098		0.0040	0.00039	mg/L	1		200.8	Total Recoverable
Chromium	0.0025		0.0020	0.00039	mg/L	1		200.8	Total Recoverable
Ammonia (as N)	6.5		0.20	0.14	mg/L	10		350.1	Total/NA
Total Dissolved Solids	1300		5.0	5.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-5

Lab Sample ID: 670-40479-6

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.8	J	0.40	0.20	mg/L	1	_	300.0	Total/NA
Sulfate	9.2		1.0	0.50	mg/L	1		300.0	Total/NA
Iron	0.16	1	0.20	0.11	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Sodium	5.1		0.50	0.13	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Aluminum	0.094		0.040	0.0034	mg/L	1		200.8	Total
									Recoverable
Chromium	0.00042	1	0.0020	0.00039	mg/L	1		200.8	Total
									Recoverable
Ammonia (as N)	1.7		0.040	0.028	mg/L	2		350.1	Total/NA
Total Dissolved Solids	54		5.0	5.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-6

Lab Sample ID: 670-40479-7

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.5		0.40	0.20	mg/L	1	_	300.0	Total/NA
Sulfate	3.9		1.0	0.50	mg/L	1		300.0	Total/NA
Iron	1.1		0.20	0.11	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Sodium	15		0.50	0.13	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Aluminum	0.10		0.040	0.0034	mg/L	1		200.8	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Orlando

6/7/2024

Page 7 of 72

2

3

5

7

8

10

11

13

14

Detection Summary

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-6 (Continued)

Lab Sample ID: 670-40479-7

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00039	I	0.0040	0.00039	mg/L	1	_	200.8	Total
									Recoverable
Chromium	0.0038		0.0020	0.00039	mg/L	1		200.8	Total
									Recoverable
Ammonia (as N)	1.9		0.040	0.028	mg/L	2		350.1	Total/NA
Total Dissolved Solids	900		5.0	5.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-7 Lab Sample ID: 670-40479-8

Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	31	0.40	0.20	mg/L		_	300.0	Total/NA
Sulfate	11	1.0	0.50	mg/L	1		300.0	Total/NA
Iron	14	0.20	0.11	mg/L	1		200.7 Rev 4.4	Total Recoverable
Sodium	94	0.50	0.13	mg/L	1		200.7 Rev 4.4	Total Recoverable
Aluminum	0.015 I	0.040	0.0034	mg/L	1		200.8	Total Recoverable
Arsenic	0.0096	0.0040	0.00039	mg/L	1		200.8	Total Recoverable
Chromium	0.0021	0.0020	0.00039	mg/L	1		200.8	Total Recoverable
Ammonia (as N)	3.4	0.20	0.14	mg/L	10		350.1	Total/NA
Total Dissolved Solids	1400	5.0	5.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-8

Lab Sample ID: 670-40479-9

Analyte	Result C	ualifier PQL	. MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	49	0.40	0.20	mg/L	1	_	300.0	Total/NA
Sulfate	77	1.0	0.50	mg/L	1		300.0	Total/NA
Sodium	120	0.50	0.13	mg/L	1		200.7 Rev 4.4	Total Recoverable
Aluminum	0.17	0.040	0.0034	mg/L	1		200.8	Total Recoverable
Arsenic	0.042	0.0040	0.00039	mg/L	1		200.8	Total Recoverable
Chromium	0.0015 I	0.0020	0.00039	mg/L	1		200.8	Total Recoverable
Total Dissolved Solids	1300	5.0	5.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: TW-7

Lab Sample ID: 670-40479-10

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.3		0.40	0.20	mg/L	1	_	300.0	Total/NA
Sulfate	86		1.0	0.50	mg/L	1		300.0	Total/NA
Iron	2.3		0.20	0.11	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Sodium	98		0.50	0.13	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Aluminum	0.35		0.040	0.0034	mg/L	1		200.8	Total
									Recoverable
Arsenic	0.0012	I	0.0040	0.00039	mg/L	1		200.8	Total
									Recoverable
Chromium	0.0023		0.0020	0.00039	mg/L	1		200.8	Total
									Recoverable
Lead	0.00028	1	0.0020	0.00024	mg/L	1		200.8	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Orlando

6/7/2024

Page 8 of 72

2

3

4

6

_

9

11

13

14

Detection Summary

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: TW-7 (Continued)

Lab Sample ID: 670-40479-10

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ammonia (as N)	0.72		0.040	0.028	mg/L	2	_	350.1	Total/NA
Total Dissolved Solids	1800		5.0	5.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: TW-8

Lab Sample ID: 670-40479-11

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	43		4.0	2.0	mg/L	10	300.0	Total/NA
Sulfate	240		10	5.0	mg/L	10	300.0	Total/NA
Iron	1.1		0.20	0.11	mg/L	1	200.7 Rev 4.4	Total
								Recoverable
Sodium	91		0.50	0.13	mg/L	1	200.7 Rev 4.4	Total
								Recoverable
Aluminum	0.029	1	0.040	0.0034	mg/L	1	200.8	Total
								Recoverable
Arsenic	0.0081		0.0040	0.00039	mg/L	1	200.8	Total
								Recoverable
Chromium	0.0013	1	0.0020	0.00039	mg/L	1	200.8	Total
								Recoverable
Ammonia (as N)	1.2		0.20	0.14	mg/L	10	350.1	Total/NA
Total Dissolved Solids	1100		5.0	5.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: TW-11

Lab Sample ID: 670-40479-12

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	40		4.0	2.0	mg/L	10	_	300.0	Total/NA
Sulfate	400		10	5.0	mg/L	10		300.0	Total/NA
Iron	0.79		0.20	0.11	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Sodium	71		0.50	0.13	mg/L	1		200.7 Rev 4.4	Total
									Recoverable
Aluminum	0.047		0.040	0.0034	mg/L	1		200.8	Total
									Recoverable
Arsenic	0.00097	I	0.0040	0.00039	mg/L	1		200.8	Total
									Recoverable
Chromium	0.0018	I	0.0020	0.00039	mg/L	1		200.8	Total
									Recoverable
Ammonia (as N)	12		0.40	0.28	mg/L	20		350.1	Total/NA
Total Dissolved Solids	1400		5.0	5.0	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Page 9 of 72

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-1R

Date Collected: 05/23/24 11:15 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-1

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 13:59	
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 13:59	
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 13:59	
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 13:59	
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 13:59	
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 13:59	
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 13:59	
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 13:59	
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 13:59	
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 13:59	
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 13:59	
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 13:59	
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 13:59	
1,3-Dichloropropane	0.60		1.0	0.60	ug/L			05/31/24 13:59	
m-Dichlorobenzene	0.77		1.0		ug/L			05/31/24 13:59	
o-Dichlorobenzene	0.76		1.0		ug/L			05/31/24 13:59	
2,2-Dichloropropane	0.66	U	5.0		ug/L			05/31/24 13:59	
2-Butanone (MEK)	4.5		10		ug/L			05/31/24 13:59	
2-Chlorotoluene	0.68		1.0		ug/L			05/31/24 13:59	
2-Hexanone	2.5		20		ug/L			05/31/24 13:59	
4-Chlorotoluene	0.65		2.0		ug/L			05/31/24 13:59	
Methyl isobutyl ketone	5.0		20		ug/L			05/31/24 13:59	
Acetone	25		50		ug/L			05/31/24 13:59	
Benzene	0.71		1.0		ug/L ug/L			05/31/24 13:59	
Bromobenzene	0.77		1.0		ug/L ug/L			05/31/24 13:59	
Bromochloromethane	0.94		2.0		ug/L			05/31/24 13:59	
Bromodichloromethane	0.52		1.0		ug/L ug/L			05/31/24 13:59	
Bromoform	0.32							05/31/24 13:59	
Bromomethane	0.75		1.0 2.0	0.75					
	2.5				ug/L			05/31/24 13:59	
Carbon disulfide			5.0		ug/L			05/31/24 13:59	
Carbon tetrachloride	0.94		1.0		ug/L			05/31/24 13:59	
Chlorobenzene	0.72		1.0		ug/L			05/31/24 13:59	
Chloroethane	0.98		2.0		ug/L			05/31/24 13:59	
Chloroform	0.80		5.0		ug/L			05/31/24 13:59	
Chloromethane	0.82		2.0		ug/L			05/31/24 13:59	
cis-1,2-Dichloroethene	0.53		1.0		ug/L			05/31/24 13:59	
cis-1,3-Dichloropropene	0.59		1.0		ug/L			05/31/24 13:59	
Dibromochloromethane	0.50		1.0		ug/L			05/31/24 13:59	
Dibromomethane	0.84		1.0		ug/L			05/31/24 13:59	
Dichlorodifluoromethane	0.74		1.0		ug/L			05/31/24 13:59	
Ethylbenzene	0.69	U	1.0	0.69	ug/L			05/31/24 13:59	
sopropylbenzene	0.67		2.0	0.67	ug/L			05/31/24 13:59	
n,p-Xylenes	1.3	U	2.0	1.3	ug/L			05/31/24 13:59	
Methylene Chloride	5.0	U	10		ug/L			05/31/24 13:59	
Methyl tert-butyl ether	0.60	U	2.0	0.60	ug/L			05/31/24 13:59	
n-Butylbenzene	0.70	U	1.0	0.70	ug/L			05/31/24 13:59	
N-Propylbenzene	0.50	U	1.0	0.50	ug/L			05/31/24 13:59	
o-Xylene	0.53	U	1.0	0.53	ug/L			05/31/24 13:59	

Eurofins Orlando

6/7/2024

2

3

5

8

10

12

14

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-1R

Lab Sample ID: 670-40479-1 Date Collected: 05/23/24 11:15

Matrix: Water

Date Received: 05/24/24 06:40

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	0.61	U	1.0	0.61	ug/L			05/31/24 13:59	1
tert-Butylbenzene	0.64	U	2.0	0.64	ug/L			05/31/24 13:59	1
Tetrachloroethene	0.76	U	1.0	0.76	ug/L			05/31/24 13:59	1
Toluene	0.72	U	1.0	0.72	ug/L			05/31/24 13:59	1
trans-1,2-Dichloroethene	0.73	U	1.0	0.73	ug/L			05/31/24 13:59	1
trans-1,3-Dichloropropene	0.73	U	1.0	0.73	ug/L			05/31/24 13:59	1
Trichloroethene	0.89	U	1.0	0.89	ug/L			05/31/24 13:59	1
Trichlorofluoromethane	0.94	U	1.0	0.94	ug/L			05/31/24 13:59	1
Vinyl chloride	0.71	U	1.0	0.71	ug/L			05/31/24 13:59	1
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 13:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146			_		05/31/24 13:59	1
4-Bromofluorobenzene (Surr)	94		41 - 142					05/31/24 13:59	1
Dibromofluoromethane (Surr)	96		53 - 146					05/31/24 13:59	1

Method: EPA 300.0 - Anions, Ion Chromatography										
	Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	15		0.40	0.20	mg/L			05/24/24 14:05	1
	Nitrate as N	0.20	U	0.40	0.20	mg/L			05/24/24 14:05	1
	Sulfate	8.9		1.0	0.50	mg/L			05/24/24 14:05	1

Method: EPA 200.7 Rev 4.4 - Metals (ICP) - Total Recoverable												
	Analyte	Result Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac				
	Iron	11	0.20	0.11 mg/L		05/24/24 08:36	05/24/24 17:03	1				
	Sodium	15	0.50	0.13 mg/L		05/24/24 08:36	05/24/24 17:03	1				

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2.8		0.040	0.0034	mg/L		05/24/24 08:33	05/28/24 17:18	1
Arsenic	0.0087		0.0040	0.00039	mg/L		05/24/24 08:33	05/28/24 17:18	1
Cadmium	0.00052	1	0.0010	0.00025	mg/L		05/24/24 08:33	05/28/24 17:18	1
Chromium	0.011		0.0020	0.00039	mg/L		05/24/24 08:33	05/28/24 17:18	1
Lead	0.0011	1	0.0020	0.00024	mg/L		05/24/24 08:33	05/28/24 17:18	1

Method: EPA 245.1 - Mercury (CVAA)									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 13:51	1
General Chemistry									

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N) (EPA 350.1)	0.12		0.020	0.014	mg/L			06/06/24 19:23	1
Total Dissolved Solids (SM 2540C)	470		5.0	5.0	mg/L			05/29/24 10:11	1

Client Sample ID: MW-2 Lab Sample ID: 670-40479-2 Date Collected: 05/23/24 13:00 **Matrix: Water**

Date Received: 05/24/24 06:40

Method: SW846 8260D - Volatile O	rganic Comp	ounds by GC	:/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 14:17	1

Eurofins Orlando

Page 11 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-2

Date Collected: 05/23/24 13:00 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-2

Matrix: Water

Method: SW846 8260D -	volatile Organic Compounds by	GC/MS (Continued)
Analyte	Result Qualifier	PQL

Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.80		1.0	0.80	ug/L			05/31/24 14:17	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 14:17	1
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 14:17	1
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 14:17	1
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 14:17	1
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 14:17	1
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 14:17	1
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 14:17	1
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 14:17	1
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 14:17	1
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 14:17	1
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 14:17	1
1,3-Dichloropropane	0.60	U	1.0	0.60	ug/L			05/31/24 14:17	1
m-Dichlorobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 14:17	1
p-Dichlorobenzene	0.76		1.0		ug/L			05/31/24 14:17	1
2,2-Dichloropropane	0.66		5.0		ug/L			05/31/24 14:17	1
2-Butanone (MEK)	4.5		10		ug/L			05/31/24 14:17	1
2-Chlorotoluene	0.68		1.0		ug/L			05/31/24 14:17	1
2-Hexanone	2.5		20		ug/L			05/31/24 14:17	1
4-Chlorotoluene	0.65		2.0		ug/L			05/31/24 14:17	1
Methyl isobutyl ketone	5.0		20		ug/L			05/31/24 14:17	·
Acetone	25		50		ug/L			05/31/24 14:17	1
Benzene	0.71		1.0		ug/L			05/31/24 14:17	1
Bromobenzene	0.77		1.0		ug/L			05/31/24 14:17	· · · · · · 1
Bromochloromethane	0.94		2.0	0.94	-			05/31/24 14:17	1
Bromodichloromethane	0.52		1.0		ug/L			05/31/24 14:17	1
Bromoform	0.32		1.0		ug/L			05/31/24 14:17	
Bromomethane	0.75		2.0		ug/L			05/31/24 14:17	1
Carbon disulfide	2.5		5.0		-				1
Carbon tetrachloride	0.94				ug/L			05/31/24 14:17	
			1.0	0.94	-			05/31/24 14:17	
Chloroptene	0.72		1.0		ug/L			05/31/24 14:17	1
Chloroethane	0.98		2.0	0.98				05/31/24 14:17	
Chloroform	0.80		5.0	0.80				05/31/24 14:17	1
Chloromethane	0.82		2.0	0.82				05/31/24 14:17	1
cis-1,2-Dichloroethene	0.53		1.0	0.53				05/31/24 14:17	
cis-1,3-Dichloropropene	0.59		1.0		ug/L			05/31/24 14:17	1
Dibromochloromethane	0.50		1.0	0.50				05/31/24 14:17	1
Dibromomethane	0.84		1.0		ug/L			05/31/24 14:17	1
Dichlorodifluoromethane	0.74		1.0		ug/L			05/31/24 14:17	1
Ethylbenzene	0.69		1.0		ug/L			05/31/24 14:17	1
Isopropylbenzene	0.67	U	2.0	0.67	ug/L			05/31/24 14:17	1
m,p-Xylenes	1.3	U	2.0	1.3	ug/L			05/31/24 14:17	1
Methylene Chloride	5.0	U	10	5.0	ug/L			05/31/24 14:17	1
Methyl tert-butyl ether	0.60	U	2.0	0.60	ug/L			05/31/24 14:17	1
n-Butylbenzene	0.70	U	1.0	0.70	ug/L			05/31/24 14:17	1
N-Propylbenzene	0.50	U	1.0	0.50	ug/L			05/31/24 14:17	1
o-Xylene	0.53	U	1.0	0.53	ug/L			05/31/24 14:17	1
sec-Butylbenzene	0.74	U	2.0	0.74	ug/L			05/31/24 14:17	1
Styrene	0.61	U	1.0	0.61	ug/L			05/31/24 14:17	1

Eurofins Orlando

6/7/2024

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-2

Lab Sample ID: 670-40479-2 Date Collected: 05/23/24 13:00

Matrix: Water

Date Received: 05/24/24 06:40

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
tert-Butylbenzene	0.64	U	2.0	0.64	ug/L			05/31/24 14:17	1
Tetrachloroethene	0.76	U	1.0	0.76	ug/L			05/31/24 14:17	1
Toluene	0.72	U	1.0	0.72	ug/L			05/31/24 14:17	1
trans-1,2-Dichloroethene	0.73	U	1.0	0.73	ug/L			05/31/24 14:17	1
trans-1,3-Dichloropropene	0.73	U	1.0	0.73	ug/L			05/31/24 14:17	1
Trichloroethene	0.89	U	1.0	0.89	ug/L			05/31/24 14:17	1
Trichlorofluoromethane	0.94	U	1.0	0.94	ug/L			05/31/24 14:17	1
Vinyl chloride	0.71	U	1.0	0.71	ug/L			05/31/24 14:17	1
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 14:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146					05/31/24 14:17	1
4-Bromofluorobenzene (Surr)	95		41 - 142					05/31/24 14:17	1
Dibromofluoromethane (Surr)	97		53 - 146					05/31/24 14:17	1
Method: EPA 300.0 - Anions, lo	on Chromatograp	ohy							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.5	J	0.40	0.20	mg/L			05/24/24 14:55	1
Nitrate as N	0.21	1	0.40	0.20	mg/L			05/24/24 14:55	1
Sulfate	5.7		1.0	0.50	mg/L			05/24/24 14:55	1
Method: EPA 200.7 Rev 4.4 - N	letals (ICP) - Tota	l Recoverat	ole						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.11	U	0.20	0.11	mg/L		05/24/24 08:36	05/24/24 17:06	1
Sodium	4.2		0.50	0.13	mg/L		05/24/24 08:36	05/24/24 17:06	1
Method: EPA 200.8 - Metals (IC	CP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.087		0.040	0.0034	mg/L		05/24/24 08:33	05/28/24 17:20	1
Arsenic	0.00039	U	0.0040	0.00039	mg/L		05/24/24 08:33	05/28/24 17:20	1
Cadmium	0.00025	U	0.0010	0.00025	mg/L		05/24/24 08:33	05/28/24 17:20	1
Chromium	0.00039	U	0.0020	0.00039	mg/L		05/24/24 08:33	05/28/24 17:20	1
Lead	0.00024	U	0.0020	0.00024	mg/L		05/24/24 08:33	05/28/24 17:20	1
Method: EPA 245.1 - Mercury ((CVAA)								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 13:50	1
General Chemistry									
Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-			PQL 0.020	MDL 0.014		<u>D</u>	Prepared	Analyzed 06/05/24 22:29	Dil Fac

Client Sample ID: MW-3R Lab Sample ID: 670-40479-3 Date Collected: 05/23/24 13:50 **Matrix: Water**

5.0

5.0 mg/L

5.0 U

Date Received: 05/24/24 06:40

Total Dissolved Solids (SM 2540C)

Method: SW846 8260D - Volatile O	ganic Comp	ounds by GC	/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 14:35	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 14:35	1

Eurofins Orlando

05/29/24 10:11

Page 13 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-3R

Date Received: 05/24/24 06:40

Lab Sample ID: 670-40479-3 Date Collected: 05/23/24 13:50

Matrix: Water

Method: SW846 8260D - Volat Analyte		Qualifier	PQL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 14:35	
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 14:35	
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 14:35	
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 14:35	
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 14:35	
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 14:35	
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 14:35	
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 14:35	
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 14:35	
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 14:35	
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 14:35	
1,3-Dichloropropane	0.60	U	1.0		ug/L			05/31/24 14:35	
m-Dichlorobenzene	0.77	U	1.0		ug/L			05/31/24 14:35	
p-Dichlorobenzene	0.76		1.0		ug/L			05/31/24 14:35	
2,2-Dichloropropane	0.66		5.0		ug/L			05/31/24 14:35	
2-Butanone (MEK)	4.5		10		ug/L			05/31/24 14:35	
2-Chlorotoluene	0.68		1.0		ug/L			05/31/24 14:35	
2-Hexanone	2.5		20		ug/L			05/31/24 14:35	
4-Chlorotoluene	0.65		2.0		ug/L			05/31/24 14:35	
Methyl isobutyl ketone	5.0		20		ug/L			05/31/24 14:35	
Acetone	25		50		ug/L			05/31/24 14:35	
Benzene	0.71		1.0		ug/L			05/31/24 14:35	
Bromobenzene	0.77		1.0		ug/L			05/31/24 14:35	
Bromochloromethane	0.94		2.0		ug/L			05/31/24 14:35	
Bromodichloromethane	0.52		1.0		ug/L			05/31/24 14:35	
Bromoform	0.32		1.0		ug/L			05/31/24 14:35	
Bromomethane	0.75		2.0		ug/L ug/L			05/31/24 14:35	
Carbon disulfide	2.5		5.0		ug/L ug/L			05/31/24 14:35	
Carbon tetrachloride	0.94		1.0					05/31/24 14:35	
Chlorobenzene	0.94				ug/L				
			1.0		ug/L			05/31/24 14:35	•
Chloroethane Chloroform	0.98		2.0		ug/L ug/L			05/31/24 14:35	
Chloromethane	0.80		5.0		_			05/31/24 14:35	
			2.0		ug/L			05/31/24 14:35	
cis-1,2-Dichloroethene	0.53		1.0		ug/L			05/31/24 14:35	
cis-1,3-Dichloropropene	0.59		1.0		ug/L			05/31/24 14:35	,
Dibromochloromethane	0.50		1.0		ug/L			05/31/24 14:35	•
Dibromomethane	0.84		1.0		ug/L			05/31/24 14:35	
Dichlorodifluoromethane	0.74		1.0		ug/L			05/31/24 14:35	•
Ethylbenzene	0.69		1.0		ug/L			05/31/24 14:35	•
Isopropylbenzene	0.67		2.0		ug/L			05/31/24 14:35	
m,p-Xylenes	1.3		2.0		ug/L			05/31/24 14:35	•
Methylene Chloride	5.0		10		ug/L			05/31/24 14:35	•
Methyl tert-butyl ether	0.60		2.0		ug/L			05/31/24 14:35	
n-Butylbenzene	0.70		1.0		ug/L			05/31/24 14:35	•
N-Propylbenzene	0.50		1.0		ug/L			05/31/24 14:35	
o-Xylene	0.53		1.0		ug/L			05/31/24 14:35	
sec-Butylbenzene	0.74		2.0		ug/L			05/31/24 14:35	•
Styrene	0.61	U	1.0	0.61	ug/L			05/31/24 14:35	•
tert-Butylbenzene	0.64	U	2.0	0.64	ug/L			05/31/24 14:35	

Eurofins Orlando

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-3R

Date Collected: 05/23/24 13:50 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-3

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.76	U	1.0	0.76	ug/L			05/31/24 14:35	1
Toluene	0.72	U	1.0	0.72	ug/L			05/31/24 14:35	1
trans-1,2-Dichloroethene	0.73	U	1.0	0.73	ug/L			05/31/24 14:35	1
trans-1,3-Dichloropropene	0.73	U	1.0	0.73	ug/L			05/31/24 14:35	1
Trichloroethene	0.89	U	1.0	0.89	ug/L			05/31/24 14:35	1
Trichlorofluoromethane	0.94	U	1.0	0.94	ug/L			05/31/24 14:35	1
Vinyl chloride	0.71	U	1.0	0.71	ug/L			05/31/24 14:35	1
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 14:35	1

Surrogate	%Recovery (Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146	_		05/31/24 14:35	1
4-Bromofluorobenzene (Surr)	97		41 - 142			05/31/24 14:35	1
Dibromofluoromethane (Surr)	96		53 - 146			05/31/24 14:35	1

	Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	31		0.40	0.20	mg/L			05/24/24 16:54	1
	Nitrate as N	0.20	U	0.40	0.20	mg/L			05/24/24 16:54	1
	Sulfate	260		10	5.0	mg/L			05/25/24 15:35	10

Method: EPA 200.7 Rev 4.4 - Metals	(ICP) - Total Recoverable	•					
Analyte	Result Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	3.0	0.20	0.11 mg/L		05/24/24 08:36	05/24/24 17:09	1
Sodium	51	0.50	0.13 mg/L		05/24/24 08:36	05/24/24 17:09	1

Method: EPA 200.8 - Metals (I	CP/MS) - Total Recover	rable						
Analyte	Result Qual	ifier PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.28	0.040	0.0034	mg/L		05/24/24 08:33	05/28/24 17:22	1
Arsenic	0.00094 I	0.0040	0.00039	mg/L		05/24/24 08:33	05/28/24 17:22	1
Cadmium	0.00025 U	0.0010	0.00025	mg/L		05/24/24 08:33	05/28/24 17:22	1
Chromium	0.0037	0.0020	0.00039	mg/L		05/24/24 08:33	05/28/24 17:22	1
Lead	0.00024 I	0.0020	0.00024	mg/L		05/24/24 08:33	05/28/24 17:22	1

Method: EPA 245.1 - Mercury (CVAA)									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 13:53	1

General Chemistry Analyte	Result (Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N) (EPA 350.1)	3.9		0.40	0.28	mg/L			06/05/24 19:38	20
Total Dissolved Solids (SM 2540C)	1200		5.0	5.0	mg/L			05/29/24 10:11	1

Client Sample ID: MW-4 Lab Sample ID: 670-40479-4 Date Collected: 05/23/24 15:30 Matrix: Water Date Received: 05/24/24 06:40

Method: SW846 8260D - Volatil	e Organic Comp	ounds by GC	/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 14:54	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 14:54	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 14:54	1

Eurofins Orlando

Page 15 of 72

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-4

Date Collected: 05/23/24 15:30 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-4

Matrix: Water

Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 14:54	
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 14:54	
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 14:54	
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 14:54	
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 14:54	
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 14:54	
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 14:54	
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 14:54	
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 14:54	
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58				05/31/24 14:54	
1,3-Dichloropropane	0.60	U	1.0	0.60	-			05/31/24 14:54	
m-Dichlorobenzene	0.77	U	1.0	0.77	_			05/31/24 14:54	
p-Dichlorobenzene	0.76		1.0	0.76				05/31/24 14:54	
2,2-Dichloropropane	0.66		5.0	0.66	-			05/31/24 14:54	
2-Butanone (MEK)	4.5		10		ug/L			05/31/24 14:54	
2-Chlorotoluene	0.68		1.0	0.68				05/31/24 14:54	
2-Hexanone	2.5		20		ug/L			05/31/24 14:54	
4-Chlorotoluene	0.65		2.0	0.65	-			05/31/24 14:54	
	5.0		20		ug/L ug/L			05/31/24 14:54	
Methyl isobutyl ketone Acetone	25		50		_				
					ug/L			05/31/24 14:54	
Benzene	0.71		1.0	0.71				05/31/24 14:54	
Bromobenzene	0.77		1.0	0.77	-			05/31/24 14:54	
Bromochloromethane	0.94		2.0	0.94	-			05/31/24 14:54	
Bromodichloromethane	0.52		1.0	0.52				05/31/24 14:54	
Bromoform	0.75		1.0	0.75				05/31/24 14:54	
Bromomethane	0.95		2.0	0.95	-			05/31/24 14:54	
Carbon disulfide	2.5		5.0		ug/L			05/31/24 14:54	
Carbon tetrachloride	0.94		1.0	0.94	ug/L			05/31/24 14:54	
Chlorobenzene	0.72		1.0	0.72	ug/L			05/31/24 14:54	
Chloroethane	0.98	U	2.0	0.98	ug/L			05/31/24 14:54	
Chloroform	0.80	U	5.0	0.80	ug/L			05/31/24 14:54	
Chloromethane	0.82	U	2.0	0.82	ug/L			05/31/24 14:54	
cis-1,2-Dichloroethene	0.53	U	1.0	0.53	ug/L			05/31/24 14:54	
cis-1,3-Dichloropropene	0.59	U	1.0	0.59	ug/L			05/31/24 14:54	
Dibromochloromethane	0.50	U	1.0	0.50	ug/L			05/31/24 14:54	
Dibromomethane	0.84	U	1.0	0.84	ug/L			05/31/24 14:54	
Dichlorodifluoromethane	0.74	U	1.0	0.74	ug/L			05/31/24 14:54	
Ethylbenzene	0.69	U	1.0	0.69	ug/L			05/31/24 14:54	
Isopropylbenzene	0.67	U	2.0	0.67	ug/L			05/31/24 14:54	
m,p-Xylenes	1.3	U	2.0	1.3	ug/L			05/31/24 14:54	
Methylene Chloride	5.0	U	10		ug/L			05/31/24 14:54	
Methyl tert-butyl ether	0.60		2.0		ug/L			05/31/24 14:54	
n-Butylbenzene	0.70		1.0	0.70				05/31/24 14:54	
N-Propylbenzene	0.50		1.0	0.50				05/31/24 14:54	
o-Xylene	0.53		1.0	0.53	_			05/31/24 14:54	
sec-Butylbenzene	0.74		2.0	0.74				05/31/24 14:54	
Styrene	0.61		1.0	0.61	•			05/31/24 14:54	
tert-Butylbenzene	0.64		2.0		_				
Tetrachloroethene	0.64		1.0	0.64	ug/L ug/L			05/31/24 14:54 05/31/24 14:54	

Eurofins Orlando

2

4

6

8

9

11

13

14

Job ID: 670-40479-1

Client: Dominion, Inc. Project/Site: 1503.01

Client Sample ID: MW-4

Lab Sample ID: 670-40479-4 Date Collected: 05/23/24 15:30

Matrix: Water

Date Received: 05/24/24 06:40

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	0.72	U	1.0	0.72	ug/L			05/31/24 14:54	
trans-1,2-Dichloroethene	0.73	U	1.0	0.73	ug/L			05/31/24 14:54	1
trans-1,3-Dichloropropene	0.73	U	1.0	0.73	ug/L			05/31/24 14:54	1
Trichloroethene	0.89	U	1.0	0.89	ug/L			05/31/24 14:54	1
Trichlorofluoromethane	0.94	U	1.0	0.94	ug/L			05/31/24 14:54	1
Vinyl chloride	0.71	U	1.0	0.71	ug/L			05/31/24 14:54	1
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 14:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146					05/31/24 14:54	1
4-Bromofluorobenzene (Surr)	92		41 - 142					05/31/24 14:54	1
Dibromofluoromethane (Surr)	101		53 - 146					05/31/24 14:54	1
- Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.2		0.40	0.20	mg/L			05/24/24 21:25	1
Nitrate as N	0.20	U	0.40	0.20	mg/L			05/24/24 21:25	1
Sulfate	27		1.0	0.50	mg/L			05/24/24 21:25	1
- Method: EPA 200.7 Rev 4.4 - Metal	ls (ICP) - Tota	I Recoverab	le						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	4.3		0.20	0.11	mg/L		05/24/24 08:36	05/24/24 17:11	1
Sodium	140		0.50	0.13	mg/L		05/24/24 08:36	05/24/24 17:11	1
- Method: EPA 200.8 - Metals (ICP/N	IS) - Total Re	coverable							
Analyte	Result	Qualifier	PQL	MDI	Unit	D	Prepared	Analyzed	
			. 4-	WIDE					Dil Fac
Aluminum	0.0049	I	0.040	0.0034	mg/L		05/24/24 08:33	05/28/24 17:24	
Aluminum	0.0049 0.0089	I			mg/L mg/L		05/24/24 08:33 05/24/24 08:33	05/28/24 17:24 05/28/24 17:24	Dil Fac
			0.040	0.0034	•				1
Aluminum Arsenic Cadmium	0.0089		0.040	0.0034 0.00039	mg/L		05/24/24 08:33	05/28/24 17:24	1
Aluminum Arsenic	0.0089 0.00025	U	0.040 0.0040 0.0010	0.0034 0.00039 0.00025	mg/L mg/L mg/L		05/24/24 08:33 05/24/24 08:33	05/28/24 17:24 05/28/24 17:24	1 1
Aluminum Arsenic Cadmium Chromium Lead	0.0089 0.00025 0.0025 0.00024	U	0.040 0.0040 0.0010 0.0020	0.0034 0.00039 0.00025 0.00039	mg/L mg/L mg/L		05/24/24 08:33 05/24/24 08:33 05/24/24 08:33	05/28/24 17:24 05/28/24 17:24 05/28/24 17:24	1 1
Aluminum Arsenic Cadmium Chromium	0.0089 0.00025 0.0025 0.00024	U	0.040 0.0040 0.0010 0.0020	0.0034 0.00039 0.00025 0.00039	mg/L mg/L mg/L mg/L		05/24/24 08:33 05/24/24 08:33 05/24/24 08:33	05/28/24 17:24 05/28/24 17:24 05/28/24 17:24	1
Aluminum Arsenic Cadmium Chromium Lead Method: EPA 245.1 - Mercury (CVA	0.0089 0.00025 0.0025 0.00024	U U Qualifier	0.040 0.0040 0.0010 0.0020 0.0020	0.0034 0.00039 0.00025 0.00039 0.00024	mg/L mg/L mg/L mg/L	<u>D</u>	05/24/24 08:33 05/24/24 08:33 05/24/24 08:33 05/24/24 08:33	05/28/24 17:24 05/28/24 17:24 05/28/24 17:24 05/28/24 17:24	1 1 1 1 1 Dil Fac
Aluminum Arsenic Cadmium Chromium Lead Method: EPA 245.1 - Mercury (CVA	0.0089 0.00025 0.0025 0.00024 AA)	U U Qualifier	0.040 0.0040 0.0010 0.0020 0.0020	0.0034 0.00039 0.00025 0.00039 0.00024	mg/L mg/L mg/L mg/L	<u>D</u>	05/24/24 08:33 05/24/24 08:33 05/24/24 08:33 05/24/24 08:33	05/28/24 17:24 05/28/24 17:24 05/28/24 17:24 05/28/24 17:24 Analyzed	1 1 1 1

Client Sample ID: CW-4

Total Dissolved Solids (SM 2540C)

Ammonia (as N) (EPA 350.1)

Lab Sample ID: 670-40479-5 Date Collected: 05/23/24 15:05 **Matrix: Water**

2.0

10

1.4 U

1400

1.4 mg/L

10 mg/L

06/05/24 21:08

05/29/24 11:05

Date Received: 05/24/24 06:40

Method: SW846 8260D - Volati	le Organic Comp	ounds by GC	/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 15:12	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 15:12	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 15:12	1
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 15:12	1

Eurofins Orlando

Page 17 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: CW-4

Date Collected: 05/23/24 15:05 Date Received: 05/24/24 06:40

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 670-40479-5

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 15:12	1
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 15:12	1
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 15:12	1
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 15:12	1
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 15:12	1
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 15:12	1
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 15:12	1
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 15:12	1
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 15:12	1
1,3-Dichloropropane	0.60	U	1.0	0.60	ug/L			05/31/24 15:12	1
m-Dichlorobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 15:12	1
p-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			05/31/24 15:12	1
2.2-Dichloropropane	0.66	U	5.0	0.66	ua/L			05/31/24 15:12	1

			· ·	
1,1-Dichloroethene	0.94 U	1.0	0.94 ug/L	05/31/24 15:12 1
1,1-Dichloropropene	0.74 U	1.0	0.74 ug/L	05/31/24 15:12 1
1,2,3-Trichloropropane	0.64 U	2.0	0.64 ug/L	05/31/24 15:12 1
1,2,4-Trimethylbenzene	0.69 U	2.0	0.69 ug/L	05/31/24 15:12 1
1,2-Dibromoethane (EDB)	0.78 U	12	0.78 ug/L	05/31/24 15:12 1
1,2-Dichloroethane	0.63 U	1.0	0.63 ug/L	05/31/24 15:12 1
1,2-Dichloropropane	0.80 U	1.0	0.80 ug/L	05/31/24 15:12 1
1,3,5-Trimethylbenzene	0.58 U	2.0	0.58 ug/L	05/31/24 15:12 1
1,3-Dichloropropane	0.60 U	1.0	0.60 ug/L	05/31/24 15:12 1
m-Dichlorobenzene	0.77 U	1.0	0.77 ug/L	05/31/24 15:12 1
p-Dichlorobenzene	0.76 U	1.0	0.76 ug/L	05/31/24 15:12 1
2,2-Dichloropropane	0.66 U	5.0	0.66 ug/L	05/31/24 15:12 1
2-Butanone (MEK)	4.5 U	10	4.5 ug/L	05/31/24 15:12 1
2-Chlorotoluene	0.68 U	1.0	0.68 ug/L	05/31/24 15:12 1
2-Hexanone	2.5 U	20	2.5 ug/L	05/31/24 15:12 1
4-Chlorotoluene	0.65 U	2.0	0.65 ug/L	05/31/24 15:12 1
Methyl isobutyl ketone	5.0 U	20	5.0 ug/L	05/31/24 15:12 1
Acetone	25 U	50	25 ug/L	05/31/24 15:12 1
Benzene	0.71 U	1.0	0.71 ug/L	05/31/24 15:12 1
Bromobenzene	0.77 U	1.0	0.77 ug/L	05/31/24 15:12 1
Bromochloromethane	0.94 U	2.0	0.94 ug/L	05/31/24 15:12 1
Bromodichloromethane	0.52 U	1.0	0.52 ug/L	05/31/24 15:12 1
Bromoform	0.75 U	1.0	0.75 ug/L	05/31/24 15:12 1
Bromomethane	0.95 U	2.0	0.95 ug/L	05/31/24 15:12 1
Carbon disulfide	2.5 U	5.0	2.5 ug/L	05/31/24 15:12 1
Carbon tetrachloride	0.94 U	1.0	0.94 ug/L	05/31/24 15:12 1
Chlorobenzene	0.72 U	1.0	0.72 ug/L	05/31/24 15:12 1
Chloroethane	0.98 U	2.0	0.98 ug/L	05/31/24 15:12 1
Chloroform	0.80 U	5.0	0.80 ug/L	05/31/24 15:12 1
Chloromethane	0.82 U	2.0	0.82 ug/L	05/31/24 15:12 1
cis-1,2-Dichloroethene	0.53 U	1.0	0.53 ug/L	05/31/24 15:12 1
cis-1,3-Dichloropropene	0.59 U	1.0	0.59 ug/L	05/31/24 15:12 1
Dibromochloromethane	0.50 U	1.0	0.50 ug/L	05/31/24 15:12 1
Dibromomethane	0.84 U	1.0	0.84 ug/L	05/31/24 15:12 1
Dichlorodifluoromethane	0.74 U	1.0	0.74 ug/L	05/31/24 15:12 1
Ethylbenzene	0.69 U	1.0	0.69 ug/L	05/31/24 15:12 1
Isopropylbenzene	0.67 U	2.0	0.67 ug/L	05/31/24 15:12 1
m,p-Xylenes	1.3 U	2.0	1.3 ug/L	05/31/24 15:12 1
Methylene Chloride	5.0 U	10	5.0 ug/L	05/31/24 15:12 1
Methyl tert-butyl ether	0.60 U	2.0	0.60 ug/L	05/31/24 15:12 1
n-Butylbenzene	0.70 U	1.0	0.70 ug/L	05/31/24 15:12 1
N-Propylbenzene	0.50 U	1.0	0.50 ug/L	05/31/24 15:12 1
o-Xylene	0.53 U	1.0	0.53 ug/L	05/31/24 15:12 1
sec-Butylbenzene	0.74 U	2.0	0.74 ug/L	05/31/24 15:12 1
Styrene	0.61 U	1.0	0.61 ug/L	05/31/24 15:12 1
tert-Butylbenzene	0.64 U	2.0	0.64 ug/L	05/31/24 15:12 1
Tetrachloroethene	0.76 U	1.0	0.76 ug/L	05/31/24 15:12 1
Toluene	0.72 U	1.0	0.72 ug/L	05/31/24 15:12 1

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: CW-4

Date Collected: 05/23/24 15:05 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-5

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	0.73	U	1.0	0.73	ug/L			05/31/24 15:12	1
trans-1,3-Dichloropropene	0.73	U	1.0	0.73	ug/L			05/31/24 15:12	1
Trichloroethene	0.89	U	1.0	0.89	ug/L			05/31/24 15:12	1
Trichlorofluoromethane	0.94	U	1.0	0.94	ug/L			05/31/24 15:12	1
Vinyl chloride	0.71	U	1.0	0.71	ug/L			05/31/24 15:12	1
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 15:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			-		05/31/24 15:12	1
4-Bromofluorobenzene (Surr)	96		41 - 142					05/31/24 15:12	1
Dibromofluoromethane (Surr)	100		53 - 146					05/31/24 15:12	1
- Method: EPA 300.0 - Anions, I	on Chromatograp	ohy							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	69		4.0	2.0	mg/L			05/24/24 21:08	10
Nitrate as N	2.0	U	4.0	2.0	mg/L			05/24/24 21:08	10
Sulfate	280		10	5 0	mg/L			05/24/24 21:08	10

Method: EPA 200.7 Rev 4.4 - Meta	als (ICP) - Total Recoverable	•					
Analyte	Result Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	3.0	0.20	0.11 mg/L		05/24/24 10:41	05/24/24 17:35	1
Sodium	140	0.50	0.13 mg/L		05/24/24 10:41	05/24/24 17:35	1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.089		0.040	0.0034	mg/L		05/24/24 10:43	05/28/24 17:39	1
Arsenic	0.0098		0.0040	0.00039	mg/L		05/24/24 10:43	05/28/24 17:39	1
Cadmium	0.00025	U	0.0010	0.00025	mg/L		05/24/24 10:43	05/28/24 17:39	1
Chromium	0.0025		0.0020	0.00039	mg/L		05/24/24 10:43	05/28/24 17:39	1
Lead	0.00024	U	0.0020	0.00024	mg/L		05/24/24 10:43	05/28/24 17:39	1

Method: EPA 245.1 - Mercury (CVA	A)								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 13:55	1

General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N) (EPA 350.1)	6.5		0.20	0.14	mg/L			06/05/24 19:40	10
Total Dissolved Solids (SM 2540C)	1300		5.0	5.0	mg/L			05/29/24 10:11	1

Client Sample ID: MW-5	Lab Sample ID: 670-40479-6
Date Collected: 05/23/24 13:25	Matrix: Water
Date Received: 05/24/24 06:40	

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 15:31	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 15:31	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 15:31	1
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 15:31	1
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 15:31	1

Eurofins Orlando

Page 19 of 72

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-5

Date Collected: 05/23/24 13:25 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-6

Matrix: Water

Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 15:31	1
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 15:31	1
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 15:31	1
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 15:31	1
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 15:31	1
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 15:31	1
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 15:31	1
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 15:31	1
1,3-Dichloropropane	0.60	U	1.0	0.60	ug/L			05/31/24 15:31	1
m-Dichlorobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 15:31	1
p-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			05/31/24 15:31	1
2,2-Dichloropropane	0.66	U	5.0	0.66	-			05/31/24 15:31	1
2-Butanone (MEK)	4.5	U	10		ug/L			05/31/24 15:31	1
2-Chlorotoluene	0.68	U	1.0	0.68				05/31/24 15:31	1
2-Hexanone	2.5		20		ug/L			05/31/24 15:31	1
4-Chlorotoluene	0.65		2.0	0.65	-			05/31/24 15:31	1
Methyl isobutyl ketone	5.0		20		ug/L			05/31/24 15:31	1
Acetone	25		50		ug/L			05/31/24 15:31	1
Benzene	0.71		1.0	0.71	-			05/31/24 15:31	1
Bromobenzene	0.77		1.0	0.77				05/31/24 15:31	
Bromochloromethane	0.94		2.0	0.94	_			05/31/24 15:31	1
Bromodichloromethane	0.52		1.0	0.52	-			05/31/24 15:31	1
Bromoform	0.75		1.0	0.75				05/31/24 15:31	
Bromomethane	0.75		2.0	0.75	-			05/31/24 15:31	1
Carbon disulfide	2.5		5.0		ug/L ug/L			05/31/24 15:31	1
Carbon tetrachloride	0.94		1.0					05/31/24 15:31	
Carbon tetracriloride Chlorobenzene	0.94			0.94	-				1
Chloroethane	0.72		1.0	0.72	-			05/31/24 15:31	1
			2.0	0.98				05/31/24 15:31	
Chlorogorthono	0.80		5.0	0.80	-			05/31/24 15:31	1
Chloromethane	0.82		2.0	0.82	_			05/31/24 15:31	1
cis-1,2-Dichloroethene	0.53		1.0	0.53				05/31/24 15:31	1
cis-1,3-Dichloropropene	0.59		1.0	0.59	-			05/31/24 15:31	1
Dibromochloromethane	0.50		1.0	0.50	•			05/31/24 15:31	1
Dibromomethane	0.84		1.0	0.84				05/31/24 15:31	1
Dichlorodifluoromethane	0.74		1.0	0.74	-			05/31/24 15:31	1
Ethylbenzene	0.69		1.0	0.69	-			05/31/24 15:31	1
Isopropylbenzene	0.67		2.0	0.67				05/31/24 15:31	1
m,p-Xylenes	1.3		2.0		ug/L			05/31/24 15:31	1
Methylene Chloride	5.0		10		ug/L			05/31/24 15:31	1
Methyl tert-butyl ether	0.60		2.0	0.60				05/31/24 15:31	1
n-Butylbenzene	0.70		1.0	0.70				05/31/24 15:31	1
N-Propylbenzene	0.50		1.0	0.50				05/31/24 15:31	1
o-Xylene	0.53		1.0	0.53	ug/L			05/31/24 15:31	1
sec-Butylbenzene	0.74	U	2.0	0.74	ug/L			05/31/24 15:31	1
Styrene	0.61	U	1.0	0.61	ug/L			05/31/24 15:31	1
tert-Butylbenzene	0.64	U	2.0	0.64	ug/L			05/31/24 15:31	1
Tetrachloroethene	0.76	U	1.0	0.76	ug/L			05/31/24 15:31	1
Toluene	0.72	U	1.0	0.72	ug/L			05/31/24 15:31	1
trans-1,2-Dichloroethene	0.73	U	1.0	0.73	ug/L			05/31/24 15:31	1

Eurofins Orlando

2

4

6

8

10

12

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-5

Lab Sample ID: 670-40479-6 Date Collected: 05/23/24 13:25 Matrix: Water

Date Received: 05/24/24 06:40

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
trans-1,3-Dichloropropene	0.73	U	1.0	0.73	ug/L			05/31/24 15:31	
Trichloroethene	0.89	U	1.0	0.89	ug/L			05/31/24 15:31	
Trichlorofluoromethane	0.94	U	1.0	0.94	ug/L			05/31/24 15:31	
Vinyl chloride	0.71	U	1.0	0.71	ug/L			05/31/24 15:31	
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 15:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	100		40 - 146					05/31/24 15:31	
4-Bromofluorobenzene (Surr)	97		41 - 142					05/31/24 15:31	
Dibromofluoromethane (Surr)	98		53 - 146					05/31/24 15:31	
Method: EPA 300.0 - Anions, Ic	on Chromatograp	hy							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	7.8	J	0.40	0.20	mg/L			05/24/24 20:17	
Nitrate as N	0.20	U	0.40	0.20	mg/L			05/24/24 20:17	
Sulfate	9.2		1.0	0.50	mg/L			05/24/24 20:17	
Method: EPA 200.7 Rev 4.4 - M	etals (ICP) - Tota	I Recoveral	ble						
Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	0.16		0.20	0.11	mg/L		05/24/24 10:41	05/24/24 17:38	
Sodium	5.1		0.50	0.13	mg/L		05/24/24 10:41	05/24/24 17:38	
Method: EPA 200.8 - Metals (IC	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	0.094		0.040	0.0034	mg/L		05/24/24 10:43	05/28/24 17:41	
Arsenic	0.00039	U	0.0040	0.00039	mg/L		05/24/24 10:43	05/28/24 17:41	
Cadmium	0.00025	U	0.0010	0.00025	mg/L		05/24/24 10:43	05/28/24 17:41	
Chromium	0.00042	I	0.0020	0.00039	mg/L		05/24/24 10:43	05/28/24 17:41	
Lead	0.00024	U	0.0020	0.00024	mg/L		05/24/24 10:43	05/28/24 17:41	
Method: EPA 245.1 - Mercury (CVAA)								
Analyte	•	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 13:57	
General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ammonia (as N) (EPA 350.1)	1.7		0.040	0.028	mg/L			06/05/24 17:40	

Lab Sample ID: 670-40479-7 **Client Sample ID: MW-6**

Date Collected: 05/23/24 11:40 Date Received: 05/24/24 06:40

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 15:49	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 15:49	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 15:49	1
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 15:49	1
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 15:49	1
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 15:49	1

Eurofins Orlando

Matrix: Water

Page 21 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-6

Date Received: 05/24/24 06:40

Lab Sample ID: 670-40479-7 Date Collected: 05/23/24 11:40

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 15:49	1
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 15:49	1
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 15:49	1
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 15:49	1
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 15:49	1
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 15:49	1
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 15:49	1
1,3-Dichloropropane	0.60	U	1.0	0.60	ug/L			05/31/24 15:49	1
m-Dichlorobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 15:49	1
p-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			05/31/24 15:49	1
2,2-Dichloropropane	0.66	U	5.0	0.66	ug/L			05/31/24 15:49	1
2-Butanone (MEK)	4.5	U	10	4.5	ug/L			05/31/24 15:49	1
2-Chlorotoluene	0.68	U	1.0	0.68	ug/L			05/31/24 15:49	1
2-Hexanone	2.5	U	20	2.5	ug/L			05/31/24 15:49	1
4-Chlorotoluene	0.65	U	2.0	0.65	ug/L			05/31/24 15:49	1
Methyl isobutyl ketone	5.0	U	20	5.0	ug/L			05/31/24 15:49	1
Acetone	25	U	50	25	ug/L			05/31/24 15:49	1
Benzene	0.71	U	1.0	0.71	ug/L			05/31/24 15:49	1
Bromobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 15:49	1
Bromochloromethane	0.94	U	2.0	0.94	ug/L			05/31/24 15:49	1
Bromodichloromethane	0.52	U	1.0	0.52	ug/L			05/31/24 15:49	1
Bromoform	0.75	U	1.0	0.75	ug/L			05/31/24 15:49	1
Bromomethane	0.95	U	2.0	0.95	ug/L			05/31/24 15:49	1
Carbon disulfide	2.5	U	5.0	2.5	ug/L			05/31/24 15:49	1
Carbon tetrachloride	0.94	U	1.0	0.94	ug/L			05/31/24 15:49	1
Chlorobenzene	0.72	U	1.0	0.72	ug/L			05/31/24 15:49	1
Chloroethane	0.98	U	2.0	0.98	ug/L			05/31/24 15:49	1
Chloroform	0.80	U	5.0	0.80	ug/L			05/31/24 15:49	1
Chloromethane	0.82	U	2.0	0.82	ug/L			05/31/24 15:49	1
cis-1,2-Dichloroethene	0.53	U	1.0	0.53	ug/L			05/31/24 15:49	1
cis-1,3-Dichloropropene	0.59	U	1.0	0.59	ug/L			05/31/24 15:49	1
Dibromochloromethane	0.50	U	1.0	0.50	ug/L			05/31/24 15:49	1
Dibromomethane	0.84	U	1.0	0.84	ug/L			05/31/24 15:49	1
Dichlorodifluoromethane	0.74	U	1.0	0.74	ug/L			05/31/24 15:49	1
Ethylbenzene	0.69	U	1.0	0.69	ug/L			05/31/24 15:49	1
Isopropylbenzene	0.67	U	2.0	0.67	ug/L			05/31/24 15:49	1
m,p-Xylenes	1.3	U	2.0	1.3	ug/L			05/31/24 15:49	1
Methylene Chloride	5.0	U	10	5.0	ug/L			05/31/24 15:49	1
Methyl tert-butyl ether	0.60	U	2.0	0.60	ug/L			05/31/24 15:49	1
n-Butylbenzene	0.70	U	1.0	0.70	ug/L			05/31/24 15:49	1
N-Propylbenzene	0.50	U	1.0	0.50	ug/L			05/31/24 15:49	1
o-Xylene	0.53	U	1.0	0.53	ug/L			05/31/24 15:49	1
sec-Butylbenzene	0.74	U	2.0	0.74	ug/L			05/31/24 15:49	1
Styrene	0.61	U	1.0	0.61	ug/L			05/31/24 15:49	1
tert-Butylbenzene	0.64	U	2.0		ug/L			05/31/24 15:49	1
Tetrachloroethene	0.76	U	1.0		ug/L			05/31/24 15:49	1
Toluene	0.72		1.0		ug/L			05/31/24 15:49	1
trans-1,2-Dichloroethene	0.73		1.0	0.73	ug/L			05/31/24 15:49	1
trans-1,3-Dichloropropene	0.73		1.0		ug/L			05/31/24 15:49	1

Eurofins Orlando

6/7/2024

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Analyte

Ammonia (as N) (EPA 350.1)

Total Dissolved Solids (SM 2540C)

Client Sample ID: MW-6 Lab Sample ID: 670-40479-7

Date Collected: 05/23/24 11:40 Matrix: Water Date Received: 05/24/24 06:40

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	0.89	U	1.0	0.89	ug/L			05/31/24 15:49	1
Trichlorofluoromethane	0.94	U	1.0	0.94	ug/L			05/31/24 15:49	1
Vinyl chloride	0.71	U	1.0	0.71	ug/L			05/31/24 15:49	1
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 15:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	99		40 - 146					05/31/24 15:49	1
4-Bromofluorobenzene (Surr)	93		41 - 142					05/31/24 15:49	1
Dibromofluoromethane (Surr)	99		53 - 146					05/31/24 15:49	1
Method: EPA 300.0 - Anions, Id	on Chromatograp	hy							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.5		0.40	0.20	mg/L			05/24/24 15:46	1
			0.40	0.20	mg/L			05/24/24 15:46	1
Nitrate as N	0.20	U	0.40	0.20	ilig/L			00/2 1/2 1 10.10	
Nitrate as N Sulfate	0.20 3.9	U	1.0		mg/L			05/24/24 15:46	1
Sulfate	3.9		1.0		•				1
	3.9 letals (ICP) - Tota		1.0		mg/L	D	Prepared		
Sulfate Method: EPA 200.7 Rev 4.4 - M	3.9 letals (ICP) - Tota	l Recoverat	1.0	0.50	mg/L	<u>D</u>	Prepared 05/24/24 10:41	05/24/24 15:46	Dil Fac
Sulfate Method: EPA 200.7 Rev 4.4 - M Analyte	3.9 letals (ICP) - Tota Result	l Recoverat	1.0	0.50 MDL 0.11	mg/L Unit	<u>D</u>		05/24/24 15:46 Analyzed	Dil Fac
Sulfate Method: EPA 200.7 Rev 4.4 - M Analyte Iron	3.9 letals (ICP) - Tota Result 1.1	I Recoverate Qualifier	1.0 Dle PQL 0.20	0.50 MDL 0.11	mg/L Unit mg/L	<u> </u>	05/24/24 10:41	05/24/24 15:46 Analyzed 05/24/24 17:40	Dil Fac
Sulfate Method: EPA 200.7 Rev 4.4 - M Analyte Iron Sodium	3.9 letals (ICP) - Total Result	I Recoverate Qualifier	1.0 Dle PQL 0.20	0.50 MDL 0.11	mg/L Unit mg/L mg/L	<u>D</u>	05/24/24 10:41	05/24/24 15:46 Analyzed 05/24/24 17:40	Dil Fac
Sulfate Method: EPA 200.7 Rev 4.4 - M Analyte Iron Sodium Method: EPA 200.8 - Metals (IC	3.9 letals (ICP) - Total Result	I Recoverate Qualifier	1.0 PQL 0.20 0.50	0.50 MDL 0.11 0.13	mg/L Unit mg/L mg/L		05/24/24 10:41 05/24/24 10:41	05/24/24 15:46 Analyzed 05/24/24 17:40 05/24/24 17:40	Dil Fac
Sulfate Method: EPA 200.7 Rev 4.4 - M Analyte Iron Sodium Method: EPA 200.8 - Metals (IC Analyte	3.9 letals (ICP) - Total Result 1.1 15 CP/MS) - Total Recesult	Qualifier Coverable Qualifier	1.0 PQL 0.20 0.50 PQL	0.50 MDL 0.11 0.13	mg/L Unit mg/L mg/L		05/24/24 10:41 05/24/24 10:41 Prepared	Analyzed 05/24/24 15:46 Analyzed 05/24/24 17:40 05/24/24 17:40 Analyzed	Dil Fac
Sulfate Method: EPA 200.7 Rev 4.4 - M Analyte Iron Sodium Method: EPA 200.8 - Metals (IC Analyte Aluminum	3.9 letals (ICP) - Total Result	Recoverable Qualifier Coverable Qualifier	1.0 PQL 0.20 0.50 PQL 0.040	0.50 MDL 0.11 0.13 MDL 0.0034	mg/L Unit mg/L mg/L Unit mg/L		05/24/24 10:41 05/24/24 10:41 Prepared 05/24/24 10:43	Analyzed 05/24/24 17:40 05/24/24 17:40 Analyzed Analyzed 05/28/24 17:45	Dil Fac
Method: EPA 200.7 Rev 4.4 - M Analyte Iron Sodium Method: EPA 200.8 - Metals (IC Analyte Aluminum Arsenic	3.9 letals (ICP) - Total Result 1.1 15 CP/MS) - Total Rec Result 0.10 0.00039	Recoverable Qualifier Coverable Qualifier	1.0 PQL 0.20 0.50 PQL 0.040 0.0040	0.50 MDL 0.11 0.13 MDL 0.0034 0.00039	mg/L Unit mg/L mg/L Unit mg/L mg/L		05/24/24 10:41 05/24/24 10:41 Prepared 05/24/24 10:43 05/24/24 10:43	Analyzed 05/24/24 17:40 05/24/24 17:40 Analyzed 05/28/24 17:45 05/28/24 17:45	Dil Fac
Sulfate Method: EPA 200.7 Rev 4.4 - M Analyte Iron Sodium Method: EPA 200.8 - Metals (IC Analyte Aluminum Arsenic Cadmium	3.9 letals (ICP) - Total Result 1.1 15 CP/MS) - Total Re- Result 0.10 0.00039 0.00025	Qualifier Coverable Qualifier I	1.0 PQL 0.20 0.50 PQL 0.040 0.0040 0.0010	0.50 MDL 0.11 0.13 MDL 0.0034 0.00039 0.00025	mg/L Unit mg/L mg/L Unit mg/L mg/L mg/L mg/L mg/L		05/24/24 10:41 05/24/24 10:41 Prepared 05/24/24 10:43 05/24/24 10:43 05/24/24 10:43	Analyzed 05/24/24 17:40 05/24/24 17:40 Analyzed 05/28/24 17:45 05/28/24 17:45 05/28/24 17:45	Dil Fac
Method: EPA 200.7 Rev 4.4 - M Analyte Iron Sodium Method: EPA 200.8 - Metals (IC Analyte Aluminum Arsenic Cadmium	3.9 letals (ICP) - Total Result 1.1 15 CP/MS) - Total Rec Result 0.10 0.00039 0.00025 0.0038 0.00024	Qualifier Coverable Qualifier I	1.0 PQL 0.20 0.50 PQL 0.040 0.0040 0.0010 0.0020	0.50 MDL 0.11 0.13 MDL 0.0034 0.00039 0.00025 0.00039	mg/L Unit mg/L mg/L Unit mg/L mg/L mg/L mg/L mg/L		05/24/24 10:41 05/24/24 10:41 Prepared 05/24/24 10:43 05/24/24 10:43 05/24/24 10:43 05/24/24 10:43	Analyzed 05/24/24 17:40 05/24/24 17:40 Analyzed 05/28/24 17:45 05/28/24 17:45 05/28/24 17:45	Dil Fac
Method: EPA 200.7 Rev 4.4 - M Analyte Iron Sodium Method: EPA 200.8 - Metals (IC Analyte Aluminum Arsenic Cadmium Chromium Lead	3.9 letals (ICP) - Total Result 1.1 15 CP/MS) - Total Rec Result 0.10 0.00039 0.00025 0.0038 0.00024	Qualifier Coverable Qualifier I	1.0 PQL 0.20 0.50 PQL 0.040 0.0040 0.0010 0.0020	0.50 MDL 0.11 0.13 MDL 0.0034 0.00039 0.00025 0.00039	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		05/24/24 10:41 05/24/24 10:41 Prepared 05/24/24 10:43 05/24/24 10:43 05/24/24 10:43 05/24/24 10:43	Analyzed 05/24/24 17:40 05/24/24 17:40 Analyzed 05/28/24 17:45 05/28/24 17:45 05/28/24 17:45	Dil Fac

Client Sample ID: MW-7 Lab Sample ID: 670-40479-8 **Matrix: Water**

PQL

0.040

5.0

MDL Unit

0.028 mg/L

5.0 mg/L

Result Qualifier

1.9

900

Date Collected: 05/23/24 12:10 Date Received: 05/24/24 06:40

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 16:07	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 16:07	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 16:07	1
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 16:07	1
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 16:07	1
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 16:07	1
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 16:07	1

Eurofins Orlando

Prepared

Analyzed

06/05/24 19:41

05/29/24 10:11

Dil Fac

D

Page 23 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-7

Date Collected: 05/23/24 12:10 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-8

Matrix: Water

Method: SW846 8260D - Volatile O	rganic Comp	ounas by (GC/MS (Continued)		
Analyte	Result	Qualifier	PQL	MDL	Un
1 2 3-Trichloropropage	0.64	П	2.0	0.64	Πα

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 16:07	
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 16:07	
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 16:07	
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 16:07	
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 16:07	
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 16:07	
1,3-Dichloropropane	0.60	U	1.0	0.60	ug/L			05/31/24 16:07	
m-Dichlorobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 16:07	
p-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			05/31/24 16:07	
2,2-Dichloropropane	0.66	U	5.0	0.66	ug/L			05/31/24 16:07	
2-Butanone (MEK)	4.5	U	10	4.5	ug/L			05/31/24 16:07	
2-Chlorotoluene	0.68	U	1.0	0.68	ug/L			05/31/24 16:07	
2-Hexanone	2.5	U	20	2.5	ug/L			05/31/24 16:07	
4-Chlorotoluene	0.65	U	2.0		ug/L			05/31/24 16:07	
Methyl isobutyl ketone	5.0	U	20		ug/L			05/31/24 16:07	
Acetone	25		50	25	_			05/31/24 16:07	
Benzene	0.71		1.0		ug/L			05/31/24 16:07	
Bromobenzene	0.77	U	1.0		ug/L			05/31/24 16:07	
Bromochloromethane	0.94		2.0		ug/L			05/31/24 16:07	
Bromodichloromethane	0.52		1.0		ug/L			05/31/24 16:07	
Bromoform	0.75		1.0		ug/L			05/31/24 16:07	
Bromomethane	0.95		2.0		ug/L			05/31/24 16:07	
Carbon disulfide	2.5		5.0		ug/L			05/31/24 16:07	
Carbon tetrachloride	0.94		1.0		ug/L			05/31/24 16:07	
Chlorobenzene	0.72		1.0		ug/L			05/31/24 16:07	
Chloroethane	0.98		2.0		ug/L			05/31/24 16:07	
Chloroform	0.80		5.0		ug/L			05/31/24 16:07	
Chloromethane	0.82		2.0		ug/L			05/31/24 16:07	
cis-1,2-Dichloroethene	0.53		1.0		ug/L			05/31/24 16:07	
cis-1,3-Dichloropropene	0.59		1.0		ug/L			05/31/24 16:07	· · · · · .
Dibromochloromethane	0.59		1.0		_			05/31/24 16:07	
Dibromomethane	0.84		1.0		ug/L ug/L			05/31/24 16:07	
Dichlorodifluoromethane	0.64								
	0.74		1.0		ug/L			05/31/24 16:07	
Ethylbenzene	0.69		1.0		ug/L			05/31/24 16:07	
Isopropylbenzene			2.0		ug/L			05/31/24 16:07	
m,p-Xylenes	1.3		2.0		ug/L			05/31/24 16:07	
Methylene Chloride	5.0		10		ug/L			05/31/24 16:07	
Methyl tert-butyl ether	0.60		2.0		ug/L			05/31/24 16:07	
n-Butylbenzene	0.70		1.0		ug/L			05/31/24 16:07	,
N-Propylbenzene	0.50		1.0		ug/L			05/31/24 16:07	•
o-Xylene	0.53		1.0		ug/L			05/31/24 16:07	
sec-Butylbenzene	0.74		2.0		ug/L			05/31/24 16:07	
Styrene	0.61		1.0		ug/L			05/31/24 16:07	
tert-Butylbenzene	0.64		2.0		ug/L			05/31/24 16:07	
Tetrachloroethene	0.76		1.0		ug/L			05/31/24 16:07	
Toluene	0.72		1.0		ug/L			05/31/24 16:07	
trans-1,2-Dichloroethene	0.73		1.0		ug/L			05/31/24 16:07	
trans-1,3-Dichloropropene	0.73	U	1.0	0.73	ug/L			05/31/24 16:07	•
Trichloroethene	0.89	U	1.0	0.89	ug/L			05/31/24 16:07	

Eurofins Orlando

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-7 Lab Sample ID: 670-40479-8

Date Collected: 05/23/24 12:10 Matrix: Water

Date Received: 05/24/24 06:40

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	0.94	U	1.0	0.94	ug/L			05/31/24 16:07	1
Vinyl chloride	0.71	U	1.0	0.71	ug/L			05/31/24 16:07	1
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146					05/31/24 16:07	1
4-Bromofluorobenzene (Surr)	98		41 - 142					05/31/24 16:07	1
Dibromofluoromethane (Surr)	99		53 - 146					05/31/24 16:07	1
Method: EPA 300.0 - Anions, I	on Chromatograp	hy							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	31		0.40	0.20	mg/L			05/24/24 18:19	1
Nitrate as N	0.20	U	0.40	0.20	mg/L			05/24/24 18:19	1
Sulfate	11		1.0	0.50	mg/L			05/24/24 18:19	1
Method: EPA 200.7 Rev 4.4 - N	Metals (ICP) - Tota	l Recoveral	ole						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	14		0.20	0.11	mg/L		05/24/24 10:41	05/24/24 17:43	1
Sodium	94		0.50	0.13	mg/L		05/24/24 10:41	05/24/24 17:43	1
Method: EPA 200.8 - Metals (IC	CP/MS) - Total Red	coverable							
Analyte	•	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.015	Ī	0.040	0.0034	mg/L		05/24/24 10:43	05/28/24 17:46	1
Arsenic	0.0096		0.0040	0.00039	mg/L		05/24/24 10:43	05/28/24 17:46	1
Cadmium	0.00025	U	0.0010	0.00025	mg/L		05/24/24 10:43	05/28/24 17:46	1

Method: EPA 245.1 - Mercury (CVAA	A)								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 14:00	1

0.0020

0.00024 mg/L

05/24/24 10:43

05/28/24 17:46

0.00024 U

General Chemistry							
Analyte	Result Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N) (EPA 350.1)	3.4	0.20	0.14 mg/L			06/05/24 19:44	10
Total Dissolved Solids (SM 2540C)	1400	5.0	5.0 mg/l			05/29/24 10:11	1

Client Sample ID: MW-8

Date Collected: 05/23/24 12:35

Lab Sample ID: 670-40479-9

Matrix: Water

Date Received: 05/24/24 06:40

Lead

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 16:26	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 16:26	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 16:26	1
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 16:26	1
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 16:26	1
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 16:26	1
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 16:26	1
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 16:26	1

Eurofins Orlando

Page 25 of 72

3

5

6

8

1 N

13

14

15

irotins Orlando

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-8

Date Collected: 05/23/24 12:35 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-9

Matrix: Water

Method: SW846 8260D - Volatile Organic	Compounds by	GC/MS (Continued)

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 16:26	
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 16:26	
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 16:26	
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 16:26	
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 16:26	
1,3-Dichloropropane	0.60	U	1.0	0.60	ug/L			05/31/24 16:26	
m-Dichlorobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 16:26	
p-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			05/31/24 16:26	
2,2-Dichloropropane	0.66	U	5.0	0.66	ug/L			05/31/24 16:26	
2-Butanone (MEK)	4.5	U	10		ug/L			05/31/24 16:26	
2-Chlorotoluene	0.68	U	1.0	0.68	ug/L			05/31/24 16:26	
2-Hexanone	2.5	U	20		ug/L			05/31/24 16:26	
4-Chlorotoluene	0.65		2.0	0.65	-			05/31/24 16:26	
Methyl isobutyl ketone	5.0		20		ug/L			05/31/24 16:26	
Acetone	25		50		ug/L			05/31/24 16:26	
Benzene	0.71		1.0	0.71	-			05/31/24 16:26	
Bromobenzene	0.77		1.0	0.77				05/31/24 16:26	
Bromochloromethane	0.94		2.0	0.94	-			05/31/24 16:26	
Bromodichloromethane	0.52		1.0		_			05/31/24 16:26	
Bromoform	0.32			0.52					
			1.0		ug/L			05/31/24 16:26	
Bromomethane	0.95		2.0	0.95	-			05/31/24 16:26	
Carbon disulfide	2.5		5.0		ug/L			05/31/24 16:26	
Carbon tetrachloride	0.94		1.0	0.94	-			05/31/24 16:26	•
Chlorobenzene	0.72		1.0	0.72	-			05/31/24 16:26	•
Chloroethane	0.98		2.0		ug/L			05/31/24 16:26	
Chloroform	0.80		5.0		ug/L			05/31/24 16:26	•
Chloromethane	0.82		2.0		ug/L			05/31/24 16:26	•
cis-1,2-Dichloroethene	0.53		1.0		ug/L			05/31/24 16:26	
cis-1,3-Dichloropropene	0.59		1.0		ug/L			05/31/24 16:26	•
Dibromochloromethane	0.50	U	1.0	0.50	ug/L			05/31/24 16:26	•
Dibromomethane	0.84	U	1.0	0.84	ug/L			05/31/24 16:26	
Dichlorodifluoromethane	0.74	U	1.0	0.74	ug/L			05/31/24 16:26	•
Ethylbenzene	0.69	U	1.0	0.69	ug/L			05/31/24 16:26	•
Isopropylbenzene	0.67	U	2.0	0.67	ug/L			05/31/24 16:26	
m,p-Xylenes	1.3	U	2.0	1.3	ug/L			05/31/24 16:26	
Methylene Chloride	5.0	U	10	5.0	ug/L			05/31/24 16:26	
Methyl tert-butyl ether	0.60	U	2.0	0.60	ug/L			05/31/24 16:26	
n-Butylbenzene	0.70	U	1.0	0.70	ug/L			05/31/24 16:26	
N-Propylbenzene	0.50	U	1.0	0.50	ug/L			05/31/24 16:26	
o-Xylene	0.53	U	1.0	0.53	ug/L			05/31/24 16:26	
sec-Butylbenzene	0.74	U	2.0	0.74	ug/L			05/31/24 16:26	
Styrene	0.61	U	1.0	0.61	ug/L			05/31/24 16:26	
tert-Butylbenzene	0.64	U	2.0		ug/L			05/31/24 16:26	
Tetrachloroethene	0.76		1.0	0.76				05/31/24 16:26	
Toluene	0.72		1.0	0.72	-			05/31/24 16:26	
trans-1,2-Dichloroethene	0.73		1.0	0.73				05/31/24 16:26	
trans-1,3-Dichloropropene	0.73		1.0	0.73				05/31/24 16:26	
Trichloroethene	0.89		1.0	0.75				05/31/24 16:26	
Trichlorofluoromethane	0.94		1.0		ug/L ug/L			05/31/24 16:26	

Eurofins Orlando

2

4

6

8

10

12

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-8 Lab Sample ID: 670-40479-9

Date Collected: 05/23/24 12:35 Matrix: Water

Date Received: 05/24/24 06:40

Date Received: 05/24/24 06:40

Method: SW846 8260D - Volati	le Organic Comp	ounds by G	C/MS (Contin	ued)					
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			05/31/24 16:26	1
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 16:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146					05/31/24 16:26	1
4-Bromofluorobenzene (Surr)	96		41 - 142					05/31/24 16:26	1
Dibromofluoromethane (Surr)	98		53 - 146					05/31/24 16:26	1
Method: EPA 300.0 - Anions, lo	on Chromatograp	ohy							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	49		0.40	0.20	mg/L			05/24/24 18:35	1
Nitrate as N	0.20	U	0.40	0.20	mg/L			05/24/24 18:35	1
Sulfate	77		1.0	0.50	mg/L			05/24/24 18:35	1
- Method: EPA 200.7 Rev 4.4 - N	letals (ICP) - Tota	I Recoveral	ble						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.11	U	0.20	0.11	mg/L		05/24/24 10:41	05/24/24 17:46	1
Sodium	120		0.50	0.13	mg/L		05/24/24 10:41	05/24/24 17:46	1
- Method: EPA 200.8 - Metals (IC	CP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.17		0.040	0.0034	mg/L		05/24/24 10:43	05/28/24 17:48	1
Arsenic	0.042		0.0040	0.00039	mg/L		05/24/24 10:43	05/28/24 17:48	1
Cadmium	0.00025	U	0.0010	0.00025	mg/L		05/24/24 10:43	05/28/24 17:48	1
Chromium	0.0015	1	0.0020	0.00039	mg/L		05/24/24 10:43	05/28/24 17:48	1
Lead	0.00024	U	0.0020	0.00024	mg/L		05/24/24 10:43	05/28/24 17:48	1
Method: EPA 245.1 - Mercury ((CVAA)								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	ma/L		05/24/24 09:59	05/24/24 14:01	1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 14:01	1
General Chemistry									

Ochicial Olichilatry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N) (EPA 350.1)	0.014	U	0.020	0.014	mg/L			06/05/24 22:29	1
Total Dissolved Solids (SM 2540C)	1300		5.0	5.0	mg/L			05/29/24 10:11	1

Client Sample ID: TW-7 Lab Sample ID: 670-40479-10 Date Collected: 05/23/24 15:50 Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 16:44	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 16:44	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 16:44	1
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 16:44	1
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 16:44	1
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 16:44	1
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 16:44	1
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 16:44	1
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 16:44	1

Page 27 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: TW-7 Date Collected: 05/23/24 15:50

Date Received: 05/24/24 06:40

Lab Sample ID: 670-40479-10

Matrix: Water

Analyte		Qualifier	PQL	MDL	Ullit	<u>D</u> _	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 16:44	
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 16:44	•
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 16:44	
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 16:44	
1,3-Dichloropropane	0.60	U	1.0	0.60	ug/L			05/31/24 16:44	•
m-Dichlorobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 16:44	
p-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			05/31/24 16:44	•
2,2-Dichloropropane	0.66	U	5.0	0.66	ug/L			05/31/24 16:44	
2-Butanone (MEK)	4.5	U	10	4.5	ug/L			05/31/24 16:44	
2-Chlorotoluene	0.68	U	1.0	0.68	ug/L			05/31/24 16:44	
2-Hexanone	2.5	U	20	2.5	ug/L			05/31/24 16:44	
4-Chlorotoluene	0.65	U	2.0	0.65	ug/L			05/31/24 16:44	
Methyl isobutyl ketone	5.0	U	20	5.0	ug/L			05/31/24 16:44	
Acetone	25	U	50	25	ug/L			05/31/24 16:44	
Benzene	0.71	U	1.0	0.71	ug/L			05/31/24 16:44	
Bromobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 16:44	
Bromochloromethane	0.94	U	2.0	0.94	ug/L			05/31/24 16:44	
Bromodichloromethane	0.52	U	1.0	0.52	ug/L			05/31/24 16:44	
Bromoform	0.75	U	1.0	0.75	ug/L			05/31/24 16:44	
Bromomethane	0.95	U	2.0	0.95	ug/L			05/31/24 16:44	
Carbon disulfide	2.5	U	5.0	2.5	ug/L			05/31/24 16:44	
Carbon tetrachloride	0.94	U	1.0	0.94	ug/L			05/31/24 16:44	
Chlorobenzene	0.72	U	1.0	0.72	ug/L			05/31/24 16:44	
Chloroethane	0.98	U	2.0	0.98	ug/L			05/31/24 16:44	
Chloroform	0.80	U	5.0	0.80	ug/L			05/31/24 16:44	
Chloromethane	0.82	U	2.0	0.82	ug/L			05/31/24 16:44	
cis-1,2-Dichloroethene	0.53	U	1.0	0.53	ug/L			05/31/24 16:44	
cis-1,3-Dichloropropene	0.59	U	1.0	0.59	ug/L			05/31/24 16:44	
Dibromochloromethane	0.50	U	1.0	0.50	ug/L			05/31/24 16:44	
Dibromomethane	0.84	U	1.0	0.84	ug/L			05/31/24 16:44	
Dichlorodifluoromethane	0.74	U	1.0	0.74	ug/L			05/31/24 16:44	
Ethylbenzene	0.69	U	1.0		ug/L			05/31/24 16:44	
Isopropylbenzene	0.67	U	2.0		ug/L			05/31/24 16:44	
m,p-Xylenes	1.3		2.0		ug/L			05/31/24 16:44	
Methylene Chloride	5.0	U	10		ug/L			05/31/24 16:44	
Methyl tert-butyl ether	0.60	U	2.0		ug/L			05/31/24 16:44	
n-Butylbenzene	0.70		1.0		ug/L			05/31/24 16:44	
N-Propylbenzene	0.50		1.0		ug/L			05/31/24 16:44	
o-Xylene	0.53		1.0		ug/L			05/31/24 16:44	
sec-Butylbenzene	0.74		2.0		ug/L			05/31/24 16:44	
Styrene	0.61		1.0		ug/L			05/31/24 16:44	
tert-Butylbenzene	0.64		2.0		ug/L			05/31/24 16:44	
Tetrachloroethene	0.76		1.0		ug/L			05/31/24 16:44	
Toluene	0.72		1.0		ug/L			05/31/24 16:44	
trans-1,2-Dichloroethene	0.73		1.0		ug/L			05/31/24 16:44	
trans-1,3-Dichloropropene	0.73		1.0		ug/L			05/31/24 16:44	
Trichloroethene	0.89		1.0		ug/L			05/31/24 16:44	
Trichlorofluoromethane	0.94		1.0		ug/L			05/31/24 16:44	
Vinyl chloride	0.94		1.0		ug/L			05/31/24 16:44	

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Lab Sample ID: 670-40479-10 **Client Sample ID: TW-7**

Date Collected: 05/23/24 15:50 Matrix: Water

Date Received: 05/24/24 06:40

Date Received: 05/24/24 06:40

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.3	U	2.0	1.3	ug/L			05/31/24 16:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			_		05/31/24 16:44	1
			41 - 142					05/31/24 16:44	1
4-Bromofluorobenzene (Surr)	93		41 - 142						
Dibromofluoromethane (Surr)	99	shv	53 - 146					05/31/24 16:44	:
(,	99 on Chromatograp	hy Qualifier		MDL	Unit	D	Prepared	05/31/24 16:44 Analyzed	Dil Fac
Dibromofluoromethane (Surr) Method: EPA 300.0 - Anions, Ic	99 on Chromatograp	•	53 - 146		Unit mg/L	D -	Prepared		Dil Fac
Dibromofluoromethane (Surr) Method: EPA 300.0 - Anions, Ic Analyte	on Chromatograp	Qualifier	53 - 146	0.20		<u>D</u> -	Prepared	Analyzed	Dil Fac

Analyte	Result Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	2.3	0.20	0.11	mg/L		05/24/24 10:41	05/24/24 17:48	1
Sodium	98	0.50	0.13	mg/L		05/24/24 10:41	05/24/24 17:48	1
Method: EPA 200.8 - Metals (ICP/M	S) - Total Recoverable							
Δnalvto	Result Qualifier	POI	MDI	Unit	D	Prepared	Analyzed	Dil Fac

Welliou. EPA 200.0 - Welais (ICP/IVI	o) - Total Re	Coverable							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.35		0.040	0.0034	mg/L		05/24/24 10:43	05/28/24 17:50	1
Arsenic	0.0012	1	0.0040	0.00039	mg/L		05/24/24 10:43	05/28/24 17:50	1
Cadmium	0.00025	U	0.0010	0.00025	mg/L		05/24/24 10:43	05/28/24 17:50	1
Chromium	0.0023		0.0020	0.00039	mg/L		05/24/24 10:43	05/28/24 17:50	1
Lead	0.00028	1	0.0020	0.00024	mg/L		05/24/24 10:43	05/28/24 17:50	1
-									

Method: EPA 245.1 - Mercury (CVAA	()								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 14:02	1

General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N) (EPA 350.1)	0.72		0.040	0.028	mg/L			06/05/24 17:45	2
Total Dissolved Solids (SM 2540C)	1800		5.0	5.0	mg/L			05/29/24 10:11	1

Client Sample ID: TW-8 Lab Sample ID: 670-40479-11 Date Collected: 05/23/24 14:40 **Matrix: Water**

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 17:02	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 17:02	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 17:02	1
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 17:02	1
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 17:02	1
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 17:02	1
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 17:02	1
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 17:02	1
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 17:02	1
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 17:02	1

Page 29 of 72

Eurofins Orlando

6/7/2024

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: TW-8
Date Collected: 05/23/24 14:40

Date Received: 05/24/24 06:40

Lab Sample ID: 670-40479-11

Matrix: Water

Result	Qualifier	PQL			D	Prepared	Analyzed	Dil Fa
0.63	U	1.0	0.63	ug/L			05/31/24 17:02	
0.80	U	1.0	0.80	ug/L			05/31/24 17:02	
0.58	U	2.0	0.58	ug/L			05/31/24 17:02	
0.60	U	1.0	0.60	ug/L			05/31/24 17:02	
0.77	U	1.0	0.77	ug/L			05/31/24 17:02	
0.76	U	1.0	0.76	ug/L			05/31/24 17:02	
0.66	U	5.0	0.66	ug/L			05/31/24 17:02	
4.5	U	10	4.5	ug/L			05/31/24 17:02	
0.68	U	1.0	0.68	ug/L			05/31/24 17:02	
2.5	U	20	2.5	ug/L			05/31/24 17:02	
0.65	U	2.0	0.65	ug/L			05/31/24 17:02	
5.0	U	20	5.0	ug/L			05/31/24 17:02	
25	U	50	25	ug/L			05/31/24 17:02	
0.71	U	1.0	0.71	ug/L			05/31/24 17:02	
0.77		1.0					05/31/24 17:02	
		2.0		-			05/31/24 17:02	
				_				
				-				
				•				
				-				
				-				
				_				
				_				
				_				
				_				
				_				
				_				
				•				
				-				
0.71	U	1.0	0.71	ug/L			05/31/24 17:02	•
	0.63 0.80 0.58 0.60 0.77 0.76 0.66 4.5 0.68 2.5 0.65 5.0 25 0.71 0.77 0.94 0.52 0.75 0.95 2.5 0.94 0.72 0.98 0.80 0.82 0.53 0.59 0.50 0.84 0.74 0.69 0.67 1.3 5.0 0.60 0.70 0.50 0.53 0.74 0.61 0.64 0.76 0.72 0.73 0.73 0.73 0.89 0.94	Result Qualifier 0.63 U 0.80 U 0.58 U 0.60 U 0.77 U 0.76 U 0.66 U 4.5 U 0.68 U 2.5 U 0.65 U 5.0 U 25 U 0.71 U 0.94 U 0.52 U 0.75 U 0.94 U 0.72 U 0.98 U 0.80 U 0.82 U 0.53 U 0.59 U 0.59 U 0.50 U 0.67 U 1.3 U 5.0 U 0.60 U 0.74 U 0.60 U 0.74 U 0.61 U 0.74 U 0.61 U 0.74 U 0.61 U 0.75 U 0.75 U 0.76 U 0.77 U	0.63 U 1.0 0.80 U 1.0 0.58 U 2.0 0.60 U 1.0 0.77 U 1.0 0.76 U 1.0 0.66 U 5.0 4.5 U 10 0.68 U 1.0 2.5 U 20 0.65 U 2.0 5.0 U 20 25 U 50 0.71 U 1.0 0.75 U 1.0 0.94 U 2.0 0.52 U 1.0 0.95 U 2.0 0.80 U 5.0 0.94 U 1.0 0.98 U 2.0 0.80 U 5.0 0.82 U 2.0 0.53 U 1.0 0.59 U 1.0 0.59 U 1.0 0.59 U 1.0 0.69 U 1.0 0.67 U 2.0 0.60 U 2.0 0.50 U 1.0 0.67 U 2.0 0.50 U 1.0 0.60 U 2.0 0.77 U 1.0 0.60 U 2.0 0.77 U 1.0 0.64 U 2.0 0.77 U 1.0 0.98 U 2.0 0.77 U 1.0 0.98 U 2.0 0.77 U 1.0 0.77 U 1.	0.63 U 1.0 0.63 0.80 U 1.0 0.80 0.58 U 2.0 0.58 0.60 U 1.0 0.60 0.77 U 1.0 0.77 0.76 U 1.0 0.76 0.66 U 5.0 0.66 4.5 U 20 2.5 0.68 U 20 2.5 0.65 U 20 2.5 0.65 U 20 0.65 5.0 U 20 5.0 25 U 50 25 0.71 U 1.0 0.77 0.74 U 1.0 0.77 0.75 U 1.0 0.77 0.94 U 2.0 0.94 0.52 U 1.0 0.52 0.75 U 1.0 0.52 0.75 U 1.0 0.75 0.95 U 2.0 0.95 0.94 U 1.0 0.74 0.98 U 2.0 0.98 0.80 U 5.0 0.80 0.82 U 2.0 0.88 0.82 U 2.0 0.88 0.82 U 2.0 0.88 0.82 U 2.0 0.88 0.84 U 1.0 0.53 0.59 U 1.0 0.53 0.59 U 1.0 0.50 0.84 U 1.0 0.50 0.84 U 1.0 0.84 0.74 U 1.0 0.84 0.74 U 1.0 0.84 0.74 U 1.0 0.69 0.67 U 2.0 0.66 0.60 U 2.0 0.60 0.70 U 1.0 0.50 0.84 0.74 U 1.0 0.70 0.50 U 1.0 0.50 0.84 0.74 U 1.0 0.69 0.67 U 2.0 0.60 0.70 U 1.0 0.50 0.84 0.74 U 1.0 0.50 0.85 0.74 U 2.0 0.66 0.70 U 1.0 0.50 0.53 U 1.0 0.50 0.53 U 1.0 0.53 0.74 U 2.0 0.66 0.70 U 1.0 0.50 0.53 U 1.0 0.53 0.74 U 2.0 0.66 0.70 U 1.0 0.50 0.53 U 1.0 0.53 0.74 U 2.0 0.66 0.70 U 1.0 0.50 0.53 U 1.0 0.53 0.74 U 2.0 0.66 0.75 U 1.0 0.76 0.75 U 1.0 0.76 0.75 U 1.0 0.76 0.77 U 2.0 0.67 0.73 U 1.0 0.73	0.63 U	0.63 U	0.63 U 1.0 0.63 ug/L 0.80 U 1.0 0.80 ug/L 0.68 U 2.0 0.58 ug/L 0.60 U 1.0 0.60 ug/L 0.77 U 1.0 0.77 ug/L 0.66 U 5.0 0.66 ug/L 0.67 U 1.0 0.66 ug/L 0.68 U 5.0 0.66 ug/L 0.68 U 1.0 0.66 ug/L 0.68 U 1.0 0.66 ug/L 0.68 U 1.0 0.66 ug/L 0.50 U 2.0 0.65 ug/L 0.50 U 2.0 0.65 ug/L 0.77 U 1.0 0.77 ug/L 0.77 U 1.0 0.77 ug/L 0.79 U 2.0 0.65 ug/L 0.77 U 1.0 0.77 ug/L 0.94 U 2.0 0.94 ug/L 0.95 U 2.0 0.95 ug/L 0.95 U 2.0 0.95 ug/L 0.96 U 1.0 0.72 ug/L 0.98 U 2.0 0.99 ug/L 0.80 U 5.0 0.80 ug/L 0.80 U 0.00 ug/L	0.63 U 1.0 0.63 ug/L 05/31/24/17/02 0.80 U 1.0 0.80 ug/L 05/31/24/17/02 0.66 U 2.0 0.56 ug/L 05/31/24/17/02 0.60 U 1.0 0.60 ug/L 05/31/24/17/02 0.77 U 1.0 0.77 ug/L 05/31/24/17/02 0.76 U 1.0 0.76 ug/L 05/31/24/17/02 0.76 U 1.0 0.66 ug/L 05/31/24/17/02 0.76 U 1.0 0.66 ug/L 05/31/24/17/02 0.75 U 2.0 0.65 ug/L 05/31/24/17/02 0.75 U 2.0 0.65 ug/L 05/31/24/17/02 0.77 U 1.0 0.71 ug/L 05/31/24/17/02 0.77 U 1.0 0.71 ug/L 05/31/24/17/02 0.77 U 1.0 0.71 ug/L 05/31/24/17/02 0.77 U 1.0 0.77 ug/L 05/31/24/17/02 0.78 U 2.0 0.94 ug/L 05/31/24/17/02 0.79 U 1.0 0.75 ug/L 05/31/24/17/02 0.75 U 1.0 0.75 ug/L 05/31/24/17/02 0.76 U 1.0 0.75 ug/L 05/31/24/17/02 0.79 U 1.0 0.75 ug/L 05/31/24/17/02 0.96 U 2.0 0.96 ug/L 05/31/24/17/02 0.97 U 1.0 0.72 ug/L 05/31/24/17/02 0.98 U 2.0 0.96 ug/L 05/31/24/17/02 0.99 U 1.0 0.94 ug/L 05/31/24/17/02 0.99 U 1.0 0.94 ug/L 05/31/24/17/02 0.99 U 1.0 0.94 ug/L 05/31/24/17/02 0.99 U 1.0 0.99 ug/L 05/31/24/17/02 0.99 U 1.0 0.99 ug/L 05/31/24/17/02 0.99 U 1.0 0.99 ug/L 05/31/24/17/02 0.99 U 1.0 0.90 ug/L 05/31/24/17/02 0.90 U 1.0 0.90 ug/L 05/31/24

Eurofins Orlando

2

4

6

8

10

13

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: TW-8 Lab Sample ID: 670-40479-11

Date Collected: 05/23/24 14:40 Matrix: Water Date Received: 05/24/24 06:40

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	40 - 146		05/31/24 17:02	1
4-Bromofluorobenzene (Surr)	99	41 - 142		05/31/24 17:02	1
Dibromofluoromethane (Surr)	97	53 - 146		05/31/24 17:02	1

Method: EPA 300.0 - Anions, Ion Chromatography										
	Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	43		4.0	2.0	mg/L			05/24/24 18:02	10
	Nitrate as N	2.0	U	4.0	2.0	mg/L			05/24/24 18:02	10
	Sulfate	240		10	5.0	mg/L			05/24/24 18:02	10

Method: EPA 200.7 Rev 4.4 - Metals (ICP) - Total Recoverable									
	Analyte	Result Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Iron	1.1	0.20	0.11	mg/L		05/24/24 10:41	05/24/24 17:51	1
	Sodium	91	0.50	0.13	mg/L		05/24/24 10:41	05/24/24 17:51	1

Method: EPA 200.8 - Met	tals (ICP/MS) - Total Red	coverable							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.029	I	0.040	0.0034	mg/L		05/24/24 10:43	05/28/24 17:52	1
Arsenic	0.0081		0.0040	0.00039	mg/L		05/24/24 10:43	05/28/24 17:52	1
Cadmium	0.00025	U	0.0010	0.00025	mg/L		05/24/24 10:43	05/28/24 17:52	1
Chromium	0.0013	I	0.0020	0.00039	mg/L		05/24/24 10:43	05/28/24 17:52	1
Lead	0.00024	U	0.0020	0.00024	mg/L		05/24/24 10:43	05/28/24 17:52	1

Method: EPA 245.1 - Mercury (CVA)	A)								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 14:10	1
_									

General Chemistry								
Analyte	Result Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N) (EPA 350.1)	1.2	0.20	0.14	mg/L			06/05/24 19:45	10
Total Dissolved Solids (SM 2540C)	1100	5.0	5.0	mg/L			05/29/24 10:11	1

Client Sample ID: TW-11 Lab Sample ID: 670-40479-12 Date Collected: 05/23/24 14:15 Matrix: Water Date Received: 05/24/24 06:40

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 17:21	1
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 17:21	1
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 17:21	1
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 17:21	1
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 17:21	1
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 17:21	1
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 17:21	1
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 17:21	1
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 17:21	1
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 17:21	1
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 17:21	1
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 17:21	1
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 17:21	1
1,3-Dichloropropane	0.60	U	1.0	0.60	ug/L			05/31/24 17:21	1

Eurofins Orlando

Page 31 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: TW-11

Date Received: 05/24/24 06:40

Lab Sample ID: 670-40479-12 Date Collected: 05/23/24 14:15

Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

m-Dichicrobenzene	Analyte	Result	Qualifier	PQL	MDL		D	Prepared	Analyzed	Dil Fac
2.2-Dichiropropame	m-Dichlorobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 17:21	1
2-Butanco (MEK) 4.5 U 1.0 4.5 ugL .05312/4 17:21 2-Chiorololuene 0.68 U 1.0 0.88 ugL .05312/4 17:21 2-Hexanone 2.5 U 20 2.5 ugL .05312/4 17:21 4-Chiorololuene 0.65 U 2.0 0.50 ugL .05312/4 17:21 Acatone 2.5 U 5.0 2.5 ugL .05312/4 17:21 Benzene 0.71 U 1.0 0.71 ugL .05312/4 17:21 Benzene 0.77 U 1.0 0.77 ugL .05312/4 17:21 Bermodenizorne 0.77 U 1.0 0.77 ugL .05312/4 17:21 Bermodenizorne 0.75 U 1.0 0.75 ugL .05312/4 17:21 Bermodenizorne 0.75 U 1.0 0.75 ugL .05312/4 17:21 Bermodenizorne 0.75 U 1.0 0.75 ugL .05312/4 17:21	p-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			05/31/24 17:21	1
2-Chlorofoliume	2,2-Dichloropropane	0.66	U	5.0	0.66	ug/L			05/31/24 17:21	1
2-Heranone	2-Butanone (MEK)	4.5	U	10	4.5	ug/L			05/31/24 17:21	1
4-Chlorobluene 0,65 U 2,0 0,85 ugl. 05/31/24/17/21 Methyl kelone 5,0 U 2,0 0,85 ugl. 05/31/24/17/21 Methyl kelone 5,0 U 2,0 5,5 ugl. 05/31/24/17/21 Methyl kelone 2,5 U 5,0 12,5 ugl. 05/31/24/17/21 Methyl kelone 2,5 U 5,0 12,5 ugl. 05/31/24/17/21 Methyl kelone 0,71 U 1,0 0,71 ugl. 05/31/24/17/21 Bromochiromethane 0,71 U 1,0 0,77 ugl. 05/31/24/17/21 Bromochiromethane 0,94 U 2,0 0,94 ugl. 05/31/24/17/21 Bromochiromethane 0,52 U 1,0 0,52 ugl. 05/31/24/17/21 Bromochiromethane 0,52 U 1,0 0,75 ugl. 05/31/24/17/21 Bromochiromethane 0,95 U 1,0 0,75 ugl. 05/31/24/17/21 Bromochiromethane 0,95 U 1,0 0,75 ugl. 05/31/24/17/21 Garbon disulfide 2,5 U 5,0 2,5 ugl. 05/31/24/17/21 Carbon disulfide 2,5 U 5,0 2,5 ugl. 05/31/24/17/21 Chlorobrezne 0,72 U 1,0 0,72 ugl. 05/31/24/17/21 Chlorobrezne 0,72 U 1,0 0,72 ugl. 05/31/24/17/21 Chlorobrezne 0,72 U 1,0 0,72 ugl. 05/31/24/17/21 Chlorobrezne 0,86 U 2,0 0,88 ugl. 05/31/24/17/21 Chlorobrezne 0,86 U 2,0 0,88 ugl. 05/31/24/17/21 Chlorobrezne 0,86 U 2,0 0,88 ugl. 05/31/24/17/21 Chlorobrezne 0,85 U 1,0 0,75 ugl. 05/31/24/17/21 cis-1,3-0/chloropropene 0,89 U 1,0 0,53 ugl. 05/31/24/17/21 cis-1,3-0/chloropropene 0,89 U 1,0 0,53 ugl. 05/31/24/17/21 cis-1,3-0/chloropropene 0,59 U 1,0 0,59 ugl. 05/31/24/17/21 lispropylbenzene 0,89 U 1,0 0,59 ugl. 05/31/24/17/21 lispropylbenzene 0,89 U 1,0 0,69 ugl. 05/31/24/17/21 lispropylbenzene 0,89 U 1,0 0,69 ugl. 05/31/24/17/21 lispropylbenzene 0,87 U 2,0 0,8 ugl. 05/31/24/17/21 lispropylbenzene 0,87 U 1,0 0,69 ugl. 05/31/24/17/21 lispropylbenzene 0,77 U 1,0 0,70 ugl. 05/31/24/17/21 lispropylbenzene 0,77 U 1,0 0,70 ugl. 05/31/24/17/21 lispropylbenzene 0,78 U 1,0 0,79 ugl. 05/31/24/17/21 lispropylbenzene 0,78 U 1,0 0,79 ugl.	2-Chlorotoluene	0.68	U	1.0	0.68	ug/L			05/31/24 17:21	1
Methyl isobutyl ketone 5.0 U 20 5.0 ugl. 05/31/24 17:21 Acetone 25 U 50 25 ugl. 05/31/24 17:21 Bennchene 0.71 U 1.0 0.77 ugl. 05/31/24 17:21 Bromoben Commendane 0.94 U 2.0 0.94 ugl. 05/31/24 17:21 Bromodichnormethane 0.95 U 1.0 0.75 ugl. 05/31/24 17:21 Bromodichnormethane 0.95 U 1.0 0.75 ugl. 05/31/24 17:21 Bromoderhane 0.95 U 1.0 0.75 ugl. 05/31/24 17:21 Carbon disulfide 2.5 U 5.0 2.5 ugl. 05/31/24 17:21 Carbon disulfide 0.94 U 1.0 0.94 ugl. 05/31/24 17:21 Carbon disulfide 0.94 U 1.0 0.94 ugl. 05/31/24 17:21 Chiorophane 0.98 U 1.0 0.72 ugl.	2-Hexanone	2.5	U	20	2.5	ug/L			05/31/24 17:21	1
Acetone	4-Chlorotoluene	0.65	U	2.0	0.65	ug/L			05/31/24 17:21	1
Benzane 0.71 U 1.0 0.71 Ug/L 05/31/24 17:21 Bromobenzene 0.77 U 1.0 0.77 Ug/L 05/31/24 17:21 Bromodelromethane 0.94 U 2.0 0.94 Ug/L 05/31/24 17:21 Bromodelrom 0.75 U 1.0 0.52 Ug/L 05/31/24 17:21 Bromoform 0.75 U 1.0 0.75 Ug/L 05/31/24 17:21 Bromoform 0.75 U 1.0 0.75 Ug/L 05/31/24 17:21 Carbon elarcalioride 0.94 U 1.0 0.94 Ug/L 05/31/24 17:21 Chlorodenzene 0.72 U 1.0 0.72 Ug/L 05/31/24 17:21 Chlorodenzene 0.72 U 1.0 0.72 Ug/L 05/31/24 17:21 Chlorodenzene 0.80 U 5.0 0.89 Ug/L 05/31/24 17:21 Chlorodenzene 0.81 U 2.0 0.89 Ug/L 05/31/24 17:	Methyl isobutyl ketone	5.0	U	20	5.0	ug/L			05/31/24 17:21	1
Bromobenzene 0.77 U 1.0 0.77 Ug/L 05/31/24 17:21 Bromodchloromethane 0.94 U 2.0 0.94 ug/L 05/31/24 17:21 Bromodchloromethane 0.52 U 1.0 0.52 ug/L 06/31/24 17:21 Bromomethane 0.95 U 2.0 0.95 ug/L 06/31/24 17:21 Bromomethane 0.96 U 2.0 0.95 ug/L 06/31/24 17:21 Carbon disulfide 2.5 U 5.0 2.5 ug/L 06/31/24 17:21 Carbon detrachloride 0.94 U 1.0 0.94 ug/L 06/31/24 17:21 Chloroberhane 0.96 U 2.0 0.98 ug/L 06/31/24 17:21 Chloroberhane 0.80 U 2.0 0.98 ug/L 06/31/24 17:21 Chloroberhane 0.80 U 2.0 0.82 ug/L 06/31/24 17:21 Chloromethane 0.82 U 2.0 0.82 ug/L	Acetone	25	U	50	25	ug/L			05/31/24 17:21	1
Bromochloromethane 0.94 U 2.0 0.94 ug/L 05/31/24 17:21 Bromodchloromethane 0.52 U 1.0 0.57 ug/L 06/31/24 17:21 Bromomethane 0.95 U 1.0 0.75 ug/L 06/31/24 17:21 Bromomethane 0.95 U 2.0 0.95 ug/L 06/31/24 17:21 Carbon disulfide 2.5 U 5.0 2.5 ug/L 06/31/24 17:21 Chloroberace 0.72 U 1.0 0.72 ug/L 06/31/24 17:21 Chloroberhane 0.98 U 2.0 0.98 ug/L 06/31/24 17:21 Chloromethane 0.80 U 2.0 0.82 ug/L 06/31/24 17:21 Chloromethane 0.82 U 2.0 0.82 ug/L 06/31/24 17:21 Chloromethane 0.83 U 1.0 0.53 ug/L 06/31/24 17:21 Chlorodinomethane 0.50 U 1.0 0.59 ug/L	Benzene	0.71	U	1.0	0.71	ug/L			05/31/24 17:21	1
Bromodichloromethane 0.52 U 1.0 0.52 ug/L 06/31/24 17:21 Bromoform 0.75 U 1.0 0.75 ug/L 06/31/24 17:21 Bromomethane 0.95 U 2.0 0.95 ug/L 06/31/24 17:21 Carbon disulfide 2.5 U 5.0 2.5 ug/L 06/31/24 17:21 Carbon detrachloride 0.94 U 1.0 0.72 ug/L 06/31/24 17:21 Chloroferm 0.80 U 2.0 0.98 ug/L 06/31/24 17:21 Chloroferm 0.80 U 2.0 0.98 ug/L 06/31/24 17:21 Chloroferm 0.80 U 2.0 0.82 ug/L 06/31/24 17:21 Chlorofermane 0.82 U 2.0 0.82 ug/L 06/31/24 17:21 Cis-1,2-Dichloroptopene 0.99 U 1.0 0.53 ug/L 06/31/24 17:21 Dishromofilomomethane 0.59 U 1.0 0.59 ug/L	Bromobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 17:21	1
Bromoform 0.75 U 1.0 0.75 ug/L 05/31/24 17:21 Bromomethane 0.95 U 2.0 0.95 ug/L 05/31/24 17:21 Carbon Isulfide 2.5 U 5.0 2.5 ug/L 05/31/24 17:21 Carbon Isulfide 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Chlorochance 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 Chlorochance 0.89 U 2.0 0.98 ug/L 05/31/24 17:21 Chlorochance 0.80 U 2.0 0.89 ug/L 05/31/24 17:21 Chloromethane 0.82 U 2.0 0.82 ug/L 05/31/24 17:21 Chloromethane 0.89 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromomethane 0.50 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromomethane 0.50 U 1.0 0.59 ug/L 05/31/24 1	Bromochloromethane	0.94	U	2.0	0.94	ug/L			05/31/24 17:21	1
Bromomethane 0.95 U 2.0 0.95 ug/L 05/31/24 17:21 Carbon disulfide 2.5 U 5.0 2.5 ug/L 05/31/24 17:21 Carbon tetrachforide 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Chlorochenzene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 Chlorochane 0.98 U 2.0 0.99 ug/L 05/31/24 17:21 Chlorochane 0.80 U 5.0 0.80 ug/L 05/31/24 17:21 Chloromethane 0.82 U 2.0 0.82 ug/L 05/31/24 17:21 Chloromethane 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 Dibromochloromethane 0.59 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.84 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.74 U 1.0 0.74 ug/	Bromodichloromethane	0.52	U	1.0					05/31/24 17:21	1
Carbon disulfide 2.5 U 5.0 2.5 ug/L 05/31/24 17:21 Carbon tetrachloride 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Chloroethane 0.98 U 2.0 0.98 ug/L 05/31/24 17:21 Chloroethane 0.80 U 5.0 0.80 ug/L 05/31/24 17:21 Chloromethane 0.80 U 2.0 0.82 ug/L 05/31/24 17:21 Chloromethane 0.80 U 2.0 0.82 ug/L 05/31/24 17:21 Chloromethane 0.53 U 1.0 0.59 ug/L 05/31/24 17:21 cis-1,3-Dichloropropene 0.59 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromomethane 0.50 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromomethane 0.67 U 1.0 0.69 ug/L 05/31/24 17:21 Dibromomethane 0.74 U 1.0 0.69 ug/L	Bromoform	0.75	U	1.0	0.75	ug/L			05/31/24 17:21	1
Carbon tetrachloride 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Chlorobenzene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 Chlorobenzene 0.78 U 2.0 0.98 ug/L 05/31/24 17:21 Chloroform 0.80 U 5.0 0.80 ug/L 05/31/24 17:21 Chloromethane 0.82 U 2.0 0.82 ug/L 05/31/24 17:21 Chloromethane 0.82 U 2.0 0.82 ug/L 05/31/24 17:21 cis-13-Dichloropethene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 cis-13-Dichloropethene 0.59 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.80 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.80 U 1.0 0.50 ug/L 05/31/24 17:21 Dibromochloromethane 0.84 U 1.0 0.84 ug/L 05/31/24 17:21 Dibromochloromethane 0.87 U 1.0 0.84 ug/L 05/31/24 17:21 Ethylbenzene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Ethylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Usopropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 0.90 ug/L 05/31/24 17:21 Met	Bromomethane	0.95	U	2.0	0.95	ug/L			05/31/24 17:21	1
Chlorobenzene 0.72 U 1.0 0.72 ug/L 05/31/24 17.21 Chloroethane 0.98 U 2.0 0.98 ug/L 05/31/24 17.21 Chloroethane 0.98 U 2.0 0.98 ug/L 05/31/24 17.21 Chloromethane 0.80 U 5.0 0.80 ug/L 05/31/24 17.21 Chloromethane 0.82 U 2.0 0.82 ug/L 05/31/24 17.21 cis-1,2-Dichloroethene 0.53 U 1.0 0.53 ug/L 05/31/24 17.21 cis-1,3-Dichloropropene 0.59 U 1.0 0.59 ug/L 05/31/24 17.21 Dibromochloroethane 0.50 U 1.0 0.50 ug/L 05/31/24 17.21 Dibromochloroethane 0.64 U 1.0 0.50 ug/L 05/31/24 17.21 Dibromochloroethane 0.74 U 1.0 0.74 ug/L 05/31/24 17.21 Dichlorodifluoromethane 0.74 U 1.0 0.74 ug/L 05/31/24 17.21 Uspropylbenzene 0.69 U 1.0 0.69 ug/L 05/31/24 17.21 Uspropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17.21 Uspropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17.21 Uspropylbenzene 0.67 U 1.0 0.69 ug/L 05/31/24 17.21 Uspropylbenzene 0.67 U 1.0 0.69 ug/L 05/31/24 17.21 Uspropylbenzene 0.67 U 1.0 0.69 ug/L 05/31/24 17.21 Uspropylbenzene 0.67 U 1.0 0.67 ug/L 05/31/24 17.21 Uspropylbenzene 0.67 U 1.0 0.67 ug/L 05/31/24 17.21 Uspropylbenzene 0.67 U 1.0 0.67 ug/L 05/31/24 17.21 Uspropylbenzene 0.68 U 1.0 0.60 ug/L 05/31/24 17.21 Uspropylbenzene 0.60 U 1.0 0.60 ug/L 05/31/24 1	Carbon disulfide	2.5	U	5.0					05/31/24 17:21	1
Chloroethane 0.98 U 2.0 0.98 ug/L 05/31/24 17:21 Chloroform 0.80 U 5.0 0.80 ug/L 05/31/24 17:21 Chloroform 0.80 U 5.0 0.80 ug/L 05/31/24 17:21 cis-1,2-Dichloroethane 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 cis-1,3-Dichloropropene 0.59 U 1.0 0.53 ug/L 05/31/24 17:21 cis-1,3-Dichloropropene 0.59 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 Dibromochloromethane 0.84 U 1.0 0.84 ug/L 05/31/24 17:21 Dibromomethane 0.74 U 1.0 0.74 ug/L 05/31/24 17:21 Dichlorodfluoromethane 0.74 U 1.0 0.74 ug/L 05/31/24 17:21 Sopropybenzene 0.69 U 1.0 0.69 ug/L 05/31/24 17:21 Sopropybenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 0.69 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 5.0 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 0.00 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 0.00 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 0.00 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 0.00 ug/L 05/31/24 17:21 Methylene 0.00 U	Carbon tetrachloride	0.94	U	1.0	0.94	ug/L			05/31/24 17:21	1
Chloroethane 0.98 U 2.0 0.98 ug/L 05/31/24 17:21 Chloroform 0.80 U 5.0 0.80 ug/L 05/31/24 17:21 Chloroform 0.80 U 5.0 0.80 ug/L 05/31/24 17:21 Chloromethane 0.82 U 2.0 0.82 ug/L 05/31/24 17:21 cis-1,3-Dichloropthene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 cis-1,3-Dichloropthene 0.59 U 1.0 0.59 ug/L 05/31/24 17:21 cis-1,3-Dichloropthene 0.50 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.84 U 1.0 0.50 ug/L 05/31/24 17:21 Dibromochloromethane 0.84 U 1.0 0.50 ug/L 05/31/24 17:21 Dibromochloromethane 0.84 U 1.0 0.74 ug/L 05/31/24 17:21 Ethylbenzene 0.69 U 1.0 0.74 ug/L 05/31/24 17:21 Ethylbenzene 0.69 U 1.0 0.69 ug/L 05/31/24 17:21 Usopropybenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Whitelylene 0.67 U 1.0 0.70 ug/L 05/31/24 17:21 Whitelylene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 Whitelylene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 O-Sylene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 User-Butylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 User-But	Chlorobenzene	0.72	U	1.0		-			05/31/24 17:21	1
Chloroform 0.80 U 5.0 0.80 ug/L 05/31/24 17:21 Chloromethane 0.82 U 2.0 0.82 ug/L 05/31/24 17:21 cis-1,2-Dichlorogropene 0.59 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.50 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.60 U 1.0 0.50 ug/L 05/31/24 17:21 Dibromochloromethane 0.74 U 1.0 0.84 ug/L 05/31/24 17:21 Dibromochloromethane 0.74 U 1.0 0.84 ug/L 05/31/24 17:21 Dibromochloromethane 0.74 U 1.0 0.89 ug/L 05/31/24 17:21 Dibromochloromethane 0.76 U 1.0 0.69 ug/L 05/31/24 17:21 Ethylberzene 0.69 U 1.0 0.69 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 <t< td=""><td>Chloroethane</td><td>0.98</td><td>U</td><td>2.0</td><td></td><td></td><td></td><td></td><td>05/31/24 17:21</td><td>1</td></t<>	Chloroethane	0.98	U	2.0					05/31/24 17:21	1
Chloromethane 0.82 U 2.0 0.82 ug/L 05/31/24 17:21 cis-1,2-Dichloroethene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 cis-1,3-Dichloropropene 0.59 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.50 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochlane 0.84 U 1.0 0.84 ug/L 05/31/24 17:21 Dichlorodifluoromethane 0.84 U 1.0 0.84 ug/L 05/31/24 17:21 Dichlorodifluoromethane 0.85 U 1.0 0.84 ug/L 05/31/24 17:21 Dichlorodifluoromethane 0.86 U 1.0 0.74 ug/L 05/31/24 17:21 Dichlorodifluoromethane 0.87 U 1.0 0.69 ug/L 05/31/24 17:21 Ethylbenzene 0.69 U 1.0 0.69 ug/L 05/31/24 17:21 Usopropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Methylene Chloride 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Methylene Chloride 0.50 U 1.0 0.94 ug/L 05/31/24 17:21 Methylene Chloride 0.50 U 1.0 0.70 ug/L 05/31/24 17:21 O-Xylene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 U-Xylene 0.50 U 1.0 0.73 ug/L 05/31/24 17:21 U-Xylene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 U-Xylene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 U-X	Chloroform	0.80	U							1
cis-1,2-Dichloroethene	Chloromethane									1
cis-1,3-Dichloropropene 0.59 U 1.0 0.59 ug/L 05/31/24 17:21 Dibromochloromethane 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 Dibromomethane 0.84 U 1.0 0.84 ug/L 05/31/24 17:21 Ethylbenzene 0.69 U 1.0 0.74 ug/L 05/31/24 17:21 Ethylbenzene 0.69 U 1.0 0.69 ug/L 05/31/24 17:21 Isopropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Isopropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Methyl tert-butly ether 0.60 U 2.0 0.60 ug/L 05/31/24 17:21 n-Butylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 n-Propylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 n-Propylbenzene 0.50 U 1.0 0.50	cis-1.2-Dichloroethene	0.53	U							1
Dibromochloromethane 0.50 U 1.0 0.50 ug/L 05/31/24 17:21										1
Dibromomethane 0.84 U 1.0 0.84 ug/L 05/31/24 17:21 Dichlorodifluoromethane 0.74 U 1.0 0.74 ug/L 05/31/24 17:21 Ethylbenzene 0.69 U 1.0 0.69 ug/L 05/31/24 17:21 Isopropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 5.0 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 5.0 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 2.0 0.60 ug/L 05/31/24 17:21 Methyl letr-butyl ether 0.60 U 2.0 0.60 ug/L 05/31/24 17:21 Methyl letr-butyl ether 0.60 U 1.0 0.70 ug/L 05/31/24 17:21 Methyl letr-butyl ether 0.60 U 1.0 0.70 ug/L 05/31/24 17:21 N-Propylbenzene 0.53 U 1.0	, , ,									1
Dichlorodifluoromethane 0.74 U 1.0 0.74 ug/L 05/31/24 17:21 Ethylbenzene 0.69 U 1.0 0.69 ug/L 05/31/24 17:21 Isopropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 5.0 ug/L 05/31/24 17:21 Methyl tert-butyl ether 0.60 U 2.0 0.60 ug/L 05/31/24 17:21 Nebtylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 N-Propylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 N-Propylbenzene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 N-Propylbenzene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 N-Propylbenzene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 N-Propylbenzene 0.53 U 1.0 0.53						-				1
Ethylbenzene 0.69 U 1.0 0.69 ug/L 05/31/24 17:21 lsopropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 m,p-Xylenes 1.3 U 2.0 1.3 ug/L 05/31/24 17:21 m,p-Xylenes 1.3 U 2.0 1.3 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 10 5.0 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 1.0 0.60 ug/L 05/31/24 17:21 m,B-utylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 n-B-utylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 n-B-utylbenzene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 v,P-propylbenzene 0.53 U 1.0 0.50 ug/L 05/31/24 17:21 v,P-propylbenzene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 v,P-propylbenzene 0.74 U 2.0 0.74 ug/L 05/31/24 17:21 v,P-propylbenzene 0.61 U 1.0 0.61 ug/L 05/31/24 17:21 v,P-propylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 v,P-propylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 v,P-propylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 v,P-propylbenzene 0.64 U 0.0 0.61 ug/L 05/31/24 17:21 v,P-propylbenzene 0.64 U 0.0 0.66 ug/L 05/31/24 17:21 v,P-propylbenzene 0.66 U 0.0 0.66 ug/L 05/31/24 17:21 v,P-propylbenzene 0.66 U 0.0 0.66 ug/L 05/31/24 17:21 v,P-propylbenzene 0.67 U 0.0 0.68 ug/L 05/31/24 17:21 v,P-propylbenzene 0.69 U 0.0 0.69 ug/L 05/31/24 17:21 v,P-propylbenzene 0.69 U 0.0 0.73 ug/L 05/31/24 17:21 v,P-propylbenzene 0.73 U 0.0 0.73 ug/L 05/31/24 17:21 v,P-propylbenzene 0.73 U 0.0 0.73 ug/L 05/31/24 17:21 v,P-propylbenzene 0.74 U 0.0 0.75 ug/L 05/31/24 17:21 v,P-propylbenzene 0.75 0.75 ug/L 05/31/24 17:21 v,P-propylbenz										1
Sopropylbenzene 0.67 U 2.0 0.67 ug/L 05/31/24 17:21 m.pXylenes 1.3 U 2.0 1.3 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 10 5.0 ug/L 05/31/24 17:21 Methyl tert-butyl ether 0.60 U 2.0 0.60 ug/L 05/31/24 17:21 Methyl tert-butyl ether 0.60 U 2.0 0.60 ug/L 05/31/24 17:21 m.Butylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 O5/31/24 17:21 N-Propylbenzene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 O-Xylene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 O-Xylene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 O-Xylene 0.64 U 2.0 0.74 ug/L 05/31/24 17:21 U-Xylene 0.64 U 0.0 0.64 ug/L 05/31/24 17:21 U-Xylene 0.64 U 0.0 0.64 ug/L 05/31/24 17:21 U-Xylene 0.64 U 0.0 0.64 ug/L 05/31/24 17:21 U-Xylene 0.64 U 0.0 0.76 ug/L 05/31/24 17:21 U-Xylene 0.72 U 0.0 0.76 ug/L 05/31/24 17:21 U-Xylene 0.73 U 0.0 0.73 ug/L 05/31/24 17:21 U-Xylene 0.73 U 0.0 0.73 ug/L 05/31/24 17:21 U-Xylene 0.73 U 0.0 0.73 ug/L 05/31/24 17:21 U-Xylene 0.74 U 0.0 0.75 ug/L 05/31/24 17:21 U-Xylene 0.75 U 0.0 0.75 ug/L 0.75/31/24 17:21 U-Xylene 0.75/31/24 17:21 U-Xylene 0.75 U 0.0 0.75 ug/L 0.75/31/24 17:21 U-Xylene 0.75 U 0.0 0.75 ug/L 0.75/31/24 17:21 U-Xylene 0.75/31/24 17:21						-				1
m.p-Xylenes 1.3 U 2.0 1.3 ug/L 05/31/24 17:21 Methylene Chloride 5.0 U 10 5.0 ug/L 05/31/24 17:21 Methyl tert-butyl ether 0.60 U 2.0 0.60 ug/L 05/31/24 17:21 n-Butylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 N-Propylbenzene 0.53 U 1.0 0.50 ug/L 05/31/24 17:21 N-Propylbenzene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 Sylene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 Styrene 0.61 U 1.0 0.61 ug/L 05/31/24 17:21 Tetrachloroethene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Toluene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.73 U 1.0 0.73<						_				1
Methylene Chloride 5.0 U 10 5.0 ug/L 05/31/24 17:21 Methyl tert-butyl ether 0.60 U 2.0 0.60 ug/L 05/31/24 17:21 n-Butylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 N-Propylbenzene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 o-Xylene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 sec-Butylbenzene 0.74 U 2.0 0.74 ug/L 05/31/24 17:21 Styrene 0.61 U 1.0 0.61 ug/L 05/31/24 17:21 tert-Butylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 Tetrachloroethene 0.76 U 1.0 0.61 ug/L 05/31/24 17:21 Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L <td></td>										
Methyl tert-butyl ether 0.60 U 2.0 0.60 ug/L 05/31/24 17:21 n-Butylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 N-Propylbenzene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 o-Xylene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 sec-Butylbenzene 0.74 U 2.0 0.74 ug/L 05/31/24 17:21 Styrene 0.61 U 1.0 0.61 ug/L 05/31/24 17:21 tert-Butylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 Tetrachloroethene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>1</td>	• •					-				1
n-Butylbenzene 0.70 U 1.0 0.70 ug/L 05/31/24 17:21 N-Propylbenzene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 o-Xylene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 sec-Butylbenzene 0.74 U 2.0 0.74 ug/L 05/31/24 17:21 Styrene 0.61 U 1.0 0.61 ug/L 05/31/24 17:21 tert-Butylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 Tetrachloroethene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 </td <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	•									1
N-Propylbenzene 0.50 U 1.0 0.50 ug/L 05/31/24 17:21 o-Xylene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 sec-Butylbenzene 0.74 U 2.0 0.74 ug/L 05/31/24 17:21 Styrene 0.61 U 1.0 0.61 ug/L 05/31/24 17:21 tert-Butylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 tert-Butylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 Tetrachloroethene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichloroethene 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21										·
o-Xylene 0.53 U 1.0 0.53 ug/L 05/31/24 17:21 sec-Butylbenzene 0.74 U 2.0 0.74 ug/L 05/31/24 17:21 Styrene 0.61 U 1.0 0.61 ug/L 05/31/24 17:21 tert-Butylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 Tetrachloroethene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichloroethene 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21										1
sec-Butylbenzene 0.74 U 2.0 0.74 ug/L 05/31/24 17:21 Styrene 0.61 U 1.0 0.61 ug/L 05/31/24 17:21 tert-Butylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 Tetrachloroethene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21	• •					-				1
Styrene 0.61 U 1.0 0.61 ug/L 05/31/24 17:21 tert-Butylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 Tetrachloroethene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21										· · · · · · · · · · · · · · · · · · ·
tert-Butylbenzene 0.64 U 2.0 0.64 ug/L 05/31/24 17:21 Tetrachloroethene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.89 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21	•					-				1
Tetrachloroethene 0.76 U 1.0 0.76 ug/L 05/31/24 17:21 Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21	•					-				1
Toluene 0.72 U 1.0 0.72 ug/L 05/31/24 17:21 trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21										
trans-1,2-Dichloroethene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21										
trans-1,3-Dichloropropene 0.73 U 1.0 0.73 ug/L 05/31/24 17:21 Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21						-				1
Trichloroethene 0.89 U 1.0 0.89 ug/L 05/31/24 17:21 Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21										
Trichlorofluoromethane 0.94 U 1.0 0.94 ug/L 05/31/24 17:21 Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21						•				1
Vinyl chloride 0.71 U 1.0 0.71 ug/L 05/31/24 17:21 Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21										1
Xylenes, Total 1.3 U 2.0 1.3 ug/L 05/31/24 17:21										
	•									1
Surrogato V Pocovery Qualifier Limits Bronzed Analysis Sill	xyienes, Iotal	1.3	U	2.0	1.3	ug/L			05/31/24 17:21	1
	Surrogate	% Pacayons	Qualifier	l imits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	40 - 146		05/31/24 17:21	1
4-Bromofluorobenzene (Surr)	97	41 - 142		05/31/24 17:21	1
Dibromofluoromethane (Surr)	99	53 - 146		05/31/24 17:21	1

Eurofins Orlando

Page 32 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: TW-11

Lab Sample ID: 670-40479-12 Date Collected: 05/23/24 14:15

Matrix: Water

	Date	Received:	05/24/24	06:40
--	------	-----------	----------	-------

Total Dissolved Solids (SM 2540C)

1400

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	40		4.0	2.0	mg/L			05/24/24 17:45	10
Nitrate as N	2.0	U	4.0	2.0	mg/L			05/24/24 17:45	10
Sulfate	400		10	5.0	mg/L			05/24/24 17:45	10
- Method: EPA 200.7 Rev 4.4 - Me	tals (ICP) - Tota	l Recoverab	le						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.79		0.20	0.11	mg/L		05/24/24 10:41	05/24/24 17:53	1
Sodium	71		0.50	0.13	mg/L		05/24/24 10:41	05/24/24 17:53	1
Method: EPA 200.8 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.047		0.040	0.0034	mg/L		05/24/24 10:43	05/28/24 17:54	1
Arsenic	0.00097	T.	0.0040	0.00039	mg/L		05/24/24 10:43	05/28/24 17:54	1
Cadmium	0.00025	U	0.0010	0.00025	mg/L		05/24/24 10:43	05/28/24 17:54	1
Chromium	0.0018	I	0.0020	0.00039	mg/L		05/24/24 10:43	05/28/24 17:54	1
Lead -	0.00024	U	0.0020	0.00024	mg/L		05/24/24 10:43	05/28/24 17:54	1
- Method: EPA 245.1 - Mercury (C	VAA)								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	U	0.00040	0.00020	mg/L		05/24/24 09:59	05/24/24 14:11	1
General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N) (EPA 350.1)	12		0.40	0.28	mg/L			06/05/24 19:46	20

5.0

5.0 mg/L

05/29/24 11:05

Surrogate Summary

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Surrogat	e Recovery (Acceptance Lim
		TOL	BFB	DBFM	
ab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)	
60-136331-K-2 MS	Matrix Spike	98	94	93	
60-136331-K-2 MSD	Matrix Spike Duplicate	99	94	93	
70-40479-1	MW-1R	100	94	96	
70-40479-2	MW-2	100	95	97	
70-40479-3	MW-3R	100	97	96	
70-40479-4	MW-4	100	92	101	
70-40479-5	CW-4	101	96	100	
70-40479-6	MW-5	100	97	98	
70-40479-7	MW-6	99	93	99	
70-40479-8	MW-7	100	98	99	
70-40479-9	MW-8	100	96	98	
70-40479-10	TW-7	99	93	99	
70-40479-11	TW-8	101	99	97	
70-40479-12	TW-11	101	97	99	
CS 670-93447/4	Lab Control Sample	100	94	94	
MB 670-93447/7	Method Blank	99	98	97	

Surrogate Legend

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

b

8

9

11

12

4 1

QC Sample Results

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 670-93447/7

Matrix: Water

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	0.61	U	1.0	0.61	ug/L			05/31/24 12:01	
1,1,1-Trichloroethane	0.80	U	1.0	0.80	ug/L			05/31/24 12:01	
1,1,2,2-Tetrachloroethane	0.54	U	1.0	0.54	ug/L			05/31/24 12:01	
1,1,2-Trichloroethane	0.76	U	2.0	0.76	ug/L			05/31/24 12:01	
1,1-Dichloroethane	0.62	U	1.0	0.62	ug/L			05/31/24 12:01	
1,1-Dichloroethene	0.94	U	1.0	0.94	ug/L			05/31/24 12:01	
1,1-Dichloropropene	0.74	U	1.0	0.74	ug/L			05/31/24 12:01	
1,2,3-Trichloropropane	0.64	U	2.0	0.64	ug/L			05/31/24 12:01	
1,2,4-Trimethylbenzene	0.69	U	2.0	0.69	ug/L			05/31/24 12:01	
1,2-Dibromoethane (EDB)	0.78	U	12	0.78	ug/L			05/31/24 12:01	
1,2-Dichloroethane	0.63	U	1.0	0.63	ug/L			05/31/24 12:01	
1,2-Dichloropropane	0.80	U	1.0	0.80	ug/L			05/31/24 12:01	
1,3,5-Trimethylbenzene	0.58	U	2.0	0.58	ug/L			05/31/24 12:01	
1,3-Dichloropropane	0.60	U	1.0	0.60	ug/L			05/31/24 12:01	
m-Dichlorobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 12:01	
p-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			05/31/24 12:01	
2,2-Dichloropropane	0.66	U	5.0	0.66	ug/L			05/31/24 12:01	
2-Butanone (MEK)	4.5	U	10	4.5	ug/L			05/31/24 12:01	
2-Chlorotoluene	0.68	U	1.0	0.68	ug/L			05/31/24 12:01	
2-Hexanone	2.5	U	20	2.5	ug/L			05/31/24 12:01	
4-Chlorotoluene	0.65	U	2.0	0.65	ug/L			05/31/24 12:01	
Methyl isobutyl ketone	5.0	U	20	5.0	ug/L			05/31/24 12:01	
Acetone	25	U	50	25	ug/L			05/31/24 12:01	
Benzene	0.71	U	1.0	0.71				05/31/24 12:01	
Bromobenzene	0.77	U	1.0	0.77	ug/L			05/31/24 12:01	
Bromochloromethane	0.94	U	2.0	0.94	ug/L			05/31/24 12:01	
Bromodichloromethane	0.52	U	1.0		ug/L			05/31/24 12:01	
Bromoform	0.75	U	1.0	0.75	ug/L			05/31/24 12:01	
Bromomethane	0.95	U	2.0		ug/L			05/31/24 12:01	
Carbon disulfide	2.5	U	5.0		ug/L			05/31/24 12:01	
Carbon tetrachloride	0.94	U	1.0		ug/L			05/31/24 12:01	
Chlorobenzene	0.72	U	1.0		ug/L			05/31/24 12:01	
Chloroethane	0.98	U	2.0		ug/L			05/31/24 12:01	
Chloroform	0.80	U	5.0		ug/L			05/31/24 12:01	
Chloromethane	0.82		2.0		ug/L			05/31/24 12:01	
cis-1,2-Dichloroethene	0.53	U	1.0		ug/L			05/31/24 12:01	
cis-1,3-Dichloropropene	0.59		1.0		ug/L			05/31/24 12:01	
Dibromochloromethane	0.50		1.0		ug/L			05/31/24 12:01	
Dibromomethane	0.84		1.0		ug/L			05/31/24 12:01	
Dichlorodifluoromethane	0.74		1.0		ug/L			05/31/24 12:01	
Ethylbenzene	0.69		1.0		ug/L			05/31/24 12:01	
Isopropylbenzene	0.67		2.0		ug/L			05/31/24 12:01	
m,p-Xylenes	1.3		2.0		ug/L			05/31/24 12:01	
Methylene Chloride	5.0		10		ug/L			05/31/24 12:01	
Methyl tert-butyl ether	0.60		2.0		ug/L			05/31/24 12:01	
n-Butylbenzene	0.70		1.0		ug/L			05/31/24 12:01	
N-Propylbenzene	0.50		1.0		ug/L			05/31/24 12:01	
o-Xylene	0.53		1.0		ug/L			05/31/24 12:01	

Eurofins Orlando

Λ

Client Sample ID: Method Blank

Prep Type: Total/NA

5

8

10

12

14

QC Sample Results

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 670-93447/7

Matrix: Water

Analysis Batch: 93447

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
e	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
itylbenzene	0.74	U	2.0	0.74	ug/L			05/31/24 12:01	1
е	0.61	U	1.0	0.61	ug/L			05/31/24 12:01	1
tylbenzene	0.64	U	2.0	0.64	ug/L			05/31/24 12:01	1
nloroethene	0.76	U	1.0	0.76	ug/L			05/31/24 12:01	1
е	0.72	U	1.0	0.72	ug/L			05/31/24 12:01	1
,2-Dichloroethene	0.73	U	1.0	0.73	ug/L			05/31/24 12:01	1
,3-Dichloropropene	0.73	U	1.0	0.73	ug/L			05/31/24 12:01	1
roethene	0.89	U	1.0	0.89	ug/L			05/31/24 12:01	1
rofluoromethane	0.94	U	1.0	0.94	ug/L			05/31/24 12:01	1
hloride	0.71	U	1.0	0.71	ug/L			05/31/24 12:01	1
es, Total	1.3	U	2.0	1.3	ug/L			05/31/24 12:01	1
					•				

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146	_		05/31/24 12:01	1
4-Bromofluorobenzene (Surr)	98		41 - 142			05/31/24 12:01	1
Dibromofluoromethane (Surr)	97		53 - 146			05/31/24 12:01	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 93447							
•	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	20.0	21.1		ug/L		106	54 - 141
1,1,1-Trichloroethane	20.0	20.0		ug/L		100	57 - 148
1,1,2,2-Tetrachloroethane	20.0	19.0		ug/L		95	60 - 139
1,1,2-Trichloroethane	20.0	18.9		ug/L		95	57 - 141
1,1-Dichloroethane	20.0	19.7		ug/L		99	57 - 142
1,1-Dichloroethene	20.0	21.8		ug/L		109	47 - 139
1,1-Dichloropropene	20.0	21.0		ug/L		105	56 - 137
1,2,3-Trichloropropane	20.0	17.5		ug/L		87	57 - 141
1,2,4-Trimethylbenzene	20.0	23.1		ug/L		116	59 - 142
1,2-Dibromoethane (EDB)	20.0	19.5		ug/L		97	57 - 140
1,2-Dichloroethane	20.0	17.9		ug/L		89	50 - 156
1,2-Dichloropropane	20.0	20.1		ug/L		101	61 - 133
1,3,5-Trimethylbenzene	20.0	21.9		ug/L		110	61 - 137
1,3-Dichloropropane	20.0	19.0		ug/L		95	50 - 148
m-Dichlorobenzene	20.0	21.9		ug/L		110	66 - 129
p-Dichlorobenzene	20.0	21.3		ug/L		106	65 - 133
2,2-Dichloropropane	20.0	19.5		ug/L		98	54 - 146
2-Butanone (MEK)	200	183		ug/L		91	10 - 180
2-Chlorotoluene	20.0	20.6		ug/L		103	64 - 133
2-Hexanone	200	174		ug/L		87	12 - 180
4-Chlorotoluene	20.0	21.1		ug/L		105	62 - 138
Methyl isobutyl ketone	200	174		ug/L		87	19 - 180
Acetone	200	155		ug/L		77	10 - 180
Benzene	20.0	21.4		ug/L		107	56 - 136
Bromobenzene	20.0	20.5		ug/L		102	59 - 147
Bromochloromethane	20.0	20.7		ug/L		103	54 - 141

Spike

LCS LCS

Job ID: 670-40479-1

Client: Dominion, Inc. Project/Site: 1503.01

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 670-93447/4

Matrix: Water

Analysis Batch: 93447

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

	Opino				701100	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Bromodichloromethane	20.0	19.2	ug/L	96	58 - 135	
Bromoform	20.0	19.3	ug/L	96	46 - 148	
Bromomethane	20.0	18.2	ug/L	91	10 - 173	
Carbon disulfide	20.0	18.8	ug/L	94	43 - 153	
Carbon tetrachloride	20.0	19.2	ug/L	96	54 - 156	
Chlorobenzene	20.0	20.3	ug/L	102	51 - 139	
Chloroethane	20.0	17.1	ug/L	86	27 - 180	
Chloroform	20.0	19.8	ug/L	99	58 - 139	
Chloromethane	20.0	21.7	ug/L	109	33 - 154	
cis-1,2-Dichloroethene	20.0	20.1	ug/L	101	56 - 128	
cis-1,3-Dichloropropene	20.0	20.4	ug/L	102	64 - 128	
Dibromochloromethane	20.0	19.6	ug/L	98	50 - 140	
Dibromomethane	20.0	18.7	ug/L	94	59 - 143	
Dichlorodifluoromethane	20.0	18.2	ug/L	91	10 - 180	
Ethylbenzene	20.0	21.3	ug/L	107	63 - 133	
Isopropylbenzene	20.0	22.8	ug/L	114	60 - 132	
m,p-Xylenes	20.0	21.3	ug/L	106	64 - 133	
Methylene Chloride	20.0	19.6	ug/L	98	43 - 142	
Methyl tert-butyl ether	20.0	18.5	ug/L	93	51 - 145	
n-Butylbenzene	20.0	22.2	ug/L	111	59 - 148	
N-Propylbenzene	20.0	21.1	ug/L	105	63 _ 135	
o-Xylene	20.0	21.0	ug/L	105	61 - 129	
sec-Butylbenzene	20.0	22.8	ug/L	114	63 - 137	
Styrene	20.0	22.2	ug/L	111	59 - 136	
tert-Butylbenzene	20.0	21.1	ug/L	106	61 - 136	
Tetrachloroethene	20.0	20.7	ug/L	104	60 - 147	
Toluene	20.0	19.6	ug/L	98	64 - 131	
trans-1,2-Dichloroethene	20.0	21.8	ug/L	109	54 - 134	
trans-1,3-Dichloropropene	20.0	19.5	ug/L	97	65 - 149	
Trichloroethene	20.0	21.1	ug/L	105	62 - 135	
Trichlorofluoromethane	20.0	17.4	ug/L	87	56 - 155	
Vinyl chloride	20.0	19.3	ug/L	96	20 - 167	
Xylenes, Total	40.0	42.3	ug/L	106	50 - 150	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		40 - 146
4-Bromofluorobenzene (Surr)	94		41 - 142
Dibromofluoromethane (Surr)	94		53 - 146

Lab Sample ID: 660-136331-K-2 MS

Matrix: Water

Analysis Batch: 93447

Client Sample ID: Matrix Spike	
Prep Type: Total/NA	

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	0.61	U	20.0	21.0		ug/L		105	54 - 141	
1,1,1-Trichloroethane	0.80	U	20.0	21.1		ug/L		105	57 - 148	
1,1,2,2-Tetrachloroethane	0.54	U	20.0	18.6		ug/L		93	60 - 139	
1,1,2-Trichloroethane	0.76	U	20.0	20.1		ug/L		100	57 - 141	

Eurofins Orlando

Page 37 of 72

QC Sample Results

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 660-136331-K-2 MS

Ma

An

Client Sample ID: Matrix Spike

latrix: Water				Prep Type: Total/NA
nalysis Batch: 93447				
	Sample Sample	Spike	MS MS	%Rec

	Sample	Sample	Spike	MS	MS		%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier Unit	D %Rec	Limits	
1,1-Dichloroethane	0.62	U	20.0	19.9	ug/L	99	57 - 142	
1,1-Dichloroethene	0.94	U	20.0	21.7	ug/L	109	49 - 139	
1,1-Dichloropropene	0.74	U	20.0	21.0	ug/L	105	56 - 137	
1,2,3-Trichloropropane	0.64	U	20.0	17.9	ug/L	90	57 - 141	
1,2,4-Trimethylbenzene	0.69	U	20.0	21.9	ug/L	109	59 - 142	
1,2-Dibromoethane (EDB)	0.78	U	20.0	20.5	ug/L	102	50 - 150	
1,2-Dichloroethane	0.63	U	20.0	18.0	ug/L	90	50 - 156	
1,2-Dichloropropane	0.80	U	20.0	20.2	ug/L	101	61 - 133	
1,3,5-Trimethylbenzene	0.58	U	20.0	21.3	ug/L	107	61 - 137	
1,3-Dichloropropane	0.60	U	20.0	18.8	ug/L	94	50 - 148	
m-Dichlorobenzene	0.77	U	20.0	20.9	ug/L	105	66 - 129	
p-Dichlorobenzene	0.76	U	20.0	19.5	ug/L	98	65 - 133	
2,2-Dichloropropane	0.66		20.0	19.9	ug/L	100		
2-Butanone (MEK)	4.5		200	180	ug/L	90		
2-Chlorotoluene	0.68		20.0	18.7	ug/L	93		
2-Hexanone	2.5		200	174	ug/L	87		
4-Chlorotoluene	0.65		20.0	20.2	ug/L	101		
Methyl isobutyl ketone	5.0		200	176	ug/L	88		
Acetone	25		200	137	ug/L	68		
Benzene	0.71		20.0	21.5	ug/L	107		
Bromobenzene	0.77		20.0	19.9	ug/L	99		
Bromochloromethane	0.94		20.0	19.7	ug/L	99		
Bromodichloromethane	0.52		20.0	19.7	ug/L	98		
Bromoform	0.75		20.0	18.5	ug/L	92		
Bromomethane	0.75		20.0	20.2	ug/L	101		
Carbon disulfide	2.5		20.0	18.0	ug/L	90		
Carbon tetrachloride	0.94		20.0	20.1	ug/L	100		
Chlorobenzene	0.72		20.0	20.3	ug/L	101		
Chloroethane	0.98		20.0	21.3	ug/L	106		
Chloroform	0.80		20.0	19.7	ug/L	98		
Chloromethane	0.82		20.0	24.6	ug/L	123		
cis-1,2-Dichloroethene	0.53		20.0	20.2	ug/L	101		
cis-1,3-Dichloropropene	0.59		20.0	18.3	ug/L	91		
Dibromochloromethane	0.50		20.0	19.8	ug/L	99		
Dibromomethane	0.84		20.0	19.8	ug/L	99		
Dichlorodifluoromethane	0.74		20.0	18.6	ug/L ug/L	93		
Ethylbenzene	0.69		20.0	22.3	ug/L	111		
Isopropylbenzene	0.67		20.0	22.0	ug/L	110		
m,p-Xylenes	1.3		20.0	21.8	ug/L ug/L	109		
Methylene Chloride	5.0		20.0	20.1	ug/L	100		
Methyl tert-butyl ether	0.60		20.0	19.3	ug/L	97		
	0.70							
n-Butylbenzene N-Propylbenzene	0.70		20.0 20.0	21.5 21.1	ug/L ug/L	107 105		
o-Xylene	0.50		20.0	20.6	ug/L ug/L	105		
sec-Butylbenzene	0.74		20.0	22.6	ug/L	113		
Styrene	0.61		20.0	21.4	ug/L	107		
tert-Butylbenzene	0.64		20.0	21.2	ug/L	106		
Tetrachloroethene Toluene	0.76 0.72		20.0 20.0	22.6 19.8	ug/L ug/L	113 99		

QC Sample Results

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 660-136331-K-2 MS

Matrix: Water

Analysis Batch: 93447

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit %Rec Limits trans-1,2-Dichloroethene 0.73 U 20.0 108 54 - 134 21.5 ug/L ug/L trans-1,3-Dichloropropene 0.73 U 20.0 19.8 99 65 - 149 Trichloroethene 20.0 21.9 62 - 135 0.89 U ug/L 109 Trichlorofluoromethane 0.94 U 20.0 20.6 ug/L 103 56 - 155 Vinyl chloride 0.71 U 20.0 25.4 127 20 - 167 ug/L

42.4

ug/L

40.0

1.3 U MS MS

Surrogate	%Recovery Qua	lifier Limits
Toluene-d8 (Surr)	98	40 - 146
4-Bromofluorobenzene (Surr)	94	41 - 142
Dibromofluoromethane (Surr)	93	53 - 146

Client Sample ID: Matrix Spike Duplicate

50 - 150

106

Prep Type: Total/NA

Lab Sample ID: 660-136331-K-2 MSD

Matrix: Water

Xylenes, Total

matrix vator										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analysis Batch: 93447											
	-	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	0.61		20.0	20.4		ug/L		102	54 - 141	3	21
1,1,1-Trichloroethane	0.80		20.0	21.1		ug/L		106	57 - 148	0	25
1,1,2,2-Tetrachloroethane	0.54		20.0	19.8		ug/L		99	60 - 139	7	
1,1,2-Trichloroethane	0.76	U	20.0	19.5		ug/L		97	57 - 141	3	16
1,1-Dichloroethane	0.62	U	20.0	19.8		ug/L		99	57 - 142	1	24
1,1-Dichloroethene	0.94	U	20.0	21.0		ug/L		105	49 - 139	3	16
1,1-Dichloropropene	0.74	U	20.0	20.6		ug/L		103	56 - 137	2	25
1,2,3-Trichloropropane	0.64	U	20.0	19.5		ug/L		97	57 - 141	8	19
1,2,4-Trimethylbenzene	0.69	U	20.0	21.5		ug/L		108	59 - 142	2	25
1,2-Dibromoethane (EDB)	0.78	U	20.0	19.8		ug/L		99	50 - 150	3	16
1,2-Dichloroethane	0.63	U	20.0	17.8		ug/L		89	50 - 156	1	18
1,2-Dichloropropane	0.80	U	20.0	20.5		ug/L		103	61 - 133	2	26
1,3,5-Trimethylbenzene	0.58	U	20.0	21.2		ug/L		106	61 - 137	1	24
1,3-Dichloropropane	0.60	U	20.0	19.2		ug/L		96	50 - 148	2	16
m-Dichlorobenzene	0.77	U	20.0	20.9		ug/L		105	66 - 129	0	23
p-Dichlorobenzene	0.76	U	20.0	19.8		ug/L		99	65 - 133	1	23
2,2-Dichloropropane	0.66	U	20.0	20.1		ug/L		101	54 - 146	1	19
2-Butanone (MEK)	4.5	U	200	187		ug/L		93	10 - 180	4	29
2-Chlorotoluene	0.68	U	20.0	19.1		ug/L		95	64 - 133	2	22
2-Hexanone	2.5	U	200	185		ug/L		93	12 - 180	7	28
4-Chlorotoluene	0.65	U	20.0	20.3		ug/L		101	62 - 138	0	22
Methyl isobutyl ketone	5.0	U	200	179		ug/L		90	19 - 180	2	24
Acetone	25	U	200	142		ug/L		71	10 - 180	4	19
Benzene	0.71	U	20.0	21.5		ug/L		107	56 - 136	0	14
Bromobenzene	0.77	U	20.0	20.7		ug/L		104	59 - 147	4	23
Bromochloromethane	0.94	U	20.0	20.0		ug/L		100	50 - 150	1	18
Bromodichloromethane	0.52	U	20.0	19.1		ug/L		96	58 - 135	3	19
Bromoform	0.75	U	20.0	18.7		ug/L		93	46 - 148	1	18
Bromomethane	0.95	U	20.0	21.7		ug/L		108	10 - 173	7	29
Carbon disulfide	2.5	U	20.0	18.3		ug/L		91	43 - 153	2	26
Carbon tetrachloride	0.94	U	20.0	20.2		ug/L		101	54 - 156	1	27

Job ID: 670-40479-1

Client: Dominion, Inc. Project/Site: 1503.01

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 660-136331-K-2 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 93447

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorobenzene	0.72	U	20.0	19.9		ug/L		100	51 - 139	2	13
Chloroethane	0.98	U	20.0	20.7		ug/L		103	27 - 180	3	22
Chloroform	0.80	U	20.0	19.2		ug/L		96	59 - 139	2	17
Chloromethane	0.82	U	20.0	24.7		ug/L		123	33 - 154	1	31
cis-1,2-Dichloroethene	0.53	U	20.0	19.6		ug/L		98	56 - 128	3	17
cis-1,3-Dichloropropene	0.59	U	20.0	18.1		ug/L		90	64 - 128	1	20
Dibromochloromethane	0.50	U	20.0	19.6		ug/L		98	50 - 150	1	18
Dibromomethane	0.84	U	20.0	19.2		ug/L		96	59 - 143	3	20
Dichlorodifluoromethane	0.74	U	20.0	19.0		ug/L		95	10 - 180	2	26
Ethylbenzene	0.69	U	20.0	22.2		ug/L		111	63 - 133	0	18
Isopropylbenzene	0.67	U	20.0	22.8		ug/L		114	60 - 132	3	23
m,p-Xylenes	1.3	U	20.0	21.3		ug/L		106	64 - 133	3	18
Methylene Chloride	5.0	U	20.0	20.0		ug/L		100	43 - 142	0	23
Methyl tert-butyl ether	0.60	U	20.0	19.8		ug/L		99	50 - 150	3	22
n-Butylbenzene	0.70	U	20.0	21.6		ug/L		108	59 - 148	0	25
N-Propylbenzene	0.50	U	20.0	21.2		ug/L		106	63 - 135	1	21
o-Xylene	0.53	U	20.0	20.8		ug/L		104	61 - 129	1	16
sec-Butylbenzene	0.74	U	20.0	23.0		ug/L		115	63 - 137	2	23
Styrene	0.61	U	20.0	21.7		ug/L		109	59 - 136	1	32
tert-Butylbenzene	0.64	U	20.0	21.1		ug/L		106	61 - 136	0	25
Tetrachloroethene	0.76	U	20.0	22.4		ug/L		112	60 - 147	1	21
Toluene	0.72	U	20.0	19.8		ug/L		99	64 - 131	0	16
trans-1,2-Dichloroethene	0.73	U	20.0	21.0		ug/L		105	54 - 134	3	20
trans-1,3-Dichloropropene	0.73	U	20.0	20.1		ug/L		101	65 - 149	2	17
Trichloroethene	0.89	U	20.0	21.1		ug/L		105	62 - 135	4	20
Trichlorofluoromethane	0.94	U	20.0	20.2		ug/L		101	56 - 155	2	22
Vinyl chloride	0.71	U	20.0	24.9		ug/L		125	20 - 167	2	24
Xylenes, Total	1.3	U	40.0	42.1		ug/L		105	50 - 150	1	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		40 - 146
4-Bromofluorobenzene (Surr)	94		41 - 142
Dibromofluoromethane (Surr)	93		53 ₋ 146

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 670-92534/105 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92534

	МВ	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.20	U	0.40	0.20	mg/L			05/25/24 13:37	1

Client Sample ID: Method Blank Lab Sample ID: MB 670-92534/37 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 92534

	МВ	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.20	U	0.40	0.20	mg/L			05/24/24 20:00	1

Eurofins Orlando

Page 40 of 72

QC Sample Results Client: Dominion, Inc. Job ID: 670-40479-1 Project/Site: 1503.01 Method: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 670-92534/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 92534 MB MB PQL Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.20 U 0.40 0.20 mg/L 05/24/24 10:24 Lab Sample ID: MB 670-92534/68 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 92534 MB MB Analyte Result Qualifier POL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.20 U 0.40 0.20 mg/L 05/25/24 04:44 Lab Sample ID: LCS 670-92534/103 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 92534 LCS LCS Spike %Rec Added Result Qualifier Unit %Rec Limits 2.00 Nitrate as N 1.94 mg/L 90 - 110 Lab Sample ID: LCS 670-92534/35 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 92534 LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Nitrate as N 2.00 1.97 90 - 110 mg/L Lab Sample ID: LCS 670-92534/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 92534 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Nitrate as N 2.00 1.95 mg/L 98 90 - 110 Lab Sample ID: LCSD 670-92534/104 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 92534** Spike LCSD LCSD %Rec **RPD** Added RPD Analyte Result Qualifier Unit D %Rec Limits Limit Nitrate as N 2 00 1.93 90 - 110 Lab Sample ID: LCSD 670-92534/36 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 92534** LCSD LCSD %Rec RPD Spike Result Qualifier Added Limits RPD Analyte Unit D %Rec Limit

Lab Sample ID: LCSD 670-92534/5	Client Sample ID: Lab Control Sample Dup
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 92534	

1.97

mg/L

98

90 - 110

2.00

Nitrate as N

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Nitrate as N 2.00 1.95 mg/L 98 90 - 110 20

Client: Dominion, Inc. Job ID: 670-40479-1 Project/Site: 1503.01

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 670-40479-2 MS Client Sample ID: MW-2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92534

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	0.21	I	5.00	5.50		mg/L		106	80 - 120	

Lab Sample ID: 670-40479-2 MSD Client Sample ID: MW-2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92534

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	0.21	I	5.00	5.49		mg/L		106	80 - 120	0	20

Client Sample ID: MW-5 Lab Sample ID: 670-40479-6 MS **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92534

7										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	0.20	U	5.00	5.23		mg/L		105	80 - 120	

Lab Sample ID: 670-40479-6 MSD Client Sample ID: MW-5 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92534

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	0.20	U	5.00	5.23		mg/L		105	80 - 120	0	20

Lab Sample ID: MB 670-92535/105 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 92535

	IVID	IVID							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.20	U	0.40	0.20	mg/L			05/25/24 13:37	1
Sulfate	0.50	U	1.0	0.50	mg/L			05/25/24 13:37	1

Lab Sample ID: MB 670-92535/37 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92535

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.20	U	0.40	0.20	mg/L			05/24/24 20:00	1
Sulfate	0.50	U	1.0	0.50	mg/L			05/24/24 20:00	1

Lab Sample ID: MB 670-92535/6 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 92535

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.20	U	0.40	0.20	mg/L			05/24/24 10:24	1
Sulfate	0.50	U	1.0	0.50	mg/L			05/24/24 10:24	1

Job ID: 670-40479-1

Prep Type: Total/NA

Client: Dominion, Inc.

Project/Site: 1503.01

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 670-92535/68 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 92535

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.20	U	0.40	0.20	mg/L			05/25/24 04:44	1
Sulfate	0.50	U	1.0	0.50	mg/L			05/25/24 04:44	1

Lab Sample ID: LCS 670-92535/103 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92535

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Chloride 4.00 3.92 98 90 - 110 mg/L Sulfate 10.0 10.1 mg/L 101 90 - 110

Lab Sample ID: LCS 670-92535/35 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92535

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	4.00	3.91		mg/L		98	90 - 110	
Sulfate	10.0	10.1		mg/L		101	90 - 110	

Lab Sample ID: LCS 670-92535/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92535

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 4.00	3.80		mg/L		95	90 - 110	
Sulfate	10.0	9.82		mg/L		98	90 - 110	

Lab Sample ID: LCSD 670-92535/104 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 92535

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	 4.00	3.92		mg/L		98	90 - 110	0	20	
Sulfate	10.0	10.1		mg/L		101	90 - 110	0	20	

Lab Sample ID: LCSD 670-92535/36 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 92535

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	4.00	3.90		mg/L		97	90 - 110	0	20	
Sulfate	10.0	10.1		mg/L		101	90 - 110	0	20	

Lab Sample ID: LCSD 670-92535/5 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 92535

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	RPD	Limit
Chloride	4.00	3.81		mg/L	95	90 - 110	0	20
Sulfate	10.0	9.85		mg/L	98	90 - 110	0	20

Eurofins Orlando

6/7/2024

Prep Type: Total/NA

Page 43 of 72

Job ID: 670-40479-1

Client: Dominion, Inc. Project/Site: 1503.01

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 670-40479-2 MS

Matrix: Water

Analysis Batch: 92535

Client Sample ID: MW-2
Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits Chloride 5.5 J 5.00 12.3 J mg/L 135 80 - 120 Sulfate 5.7 5.00 11.1 mg/L 107 80 - 120

Lab Sample ID: 670-40479-2 MSD

Matrix: Water

Analysis Batch: 92535

Client Sample ID: MW-2 Prep Type: Total/NA

Client Sample ID: MW-5

Client Sample ID: MW-5

Prep Type: Total/NA

Prep Type: Total/NA

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	5.5	J	5.00	12.2	J	mg/L		134	80 - 120	0	20
Sulfate	5.7		5.00	11.1		mg/L		107	80 - 120	0	20

Lab Sample ID: 670-40479-6 MS

Matrix: Water

Analysis Batch: 92535

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	7.8	J	5.00	14.6	J	mg/L		136	80 - 120	
Sulfate	9.2		5.00	14.3		ma/L		101	80 - 120	

Lab Sample ID: 670-40479-6 MSD

Matrix: Water

Analysis Batch: 92535

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	7.8	J	5.00	14.6	J	mg/L		136	80 - 120	0	20	
Sulfate	9.2		5.00	14.3		mg/L		101	80 - 120	0	20	

Lab Sample ID: MB 670-93240/6

Matrix: Water

Analysis Batch: 93240

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

мв мв

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.20	U	0.40	0.20	mg/L			05/30/24 10:42	1
Sulfate	0.50	U	1.0	0.50	mg/L			05/30/24 10:42	1

Analysis Batch: 93240

_	
Lab Sample ID: LCS 670-93240/4	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 4.00	3.98		mg/L		100	90 - 110	
Sulfate	10.0	9.32		mg/L		93	90 - 110	

Lab Sample ID: LCSD 670-93240/5

Matrix: Water

Analysis Batch: 93240

-	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	RPD	Limit
Chloride	4.00	3.98		mg/L	100	90 - 110	0	20
Sulfate	10.0	9.30		mg/L	93	90 - 110	0	20

Eurofins Orlando

Prep Type: Total/NA

Page 44 of 72

QC Sample Results

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Method: 300.0 - Anions, Ion Chromatography

8.5

8.5

Lab Sample ID: 670-40479-6 MS

Matrix: Water Prep Type: Total/NA Analysis Batch: 93240 Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Chloride 7.8 5.00 13.3 mg/L 110 80 - 120

14.1

14.2

5.00

5.00

Lab Sample ID: 670-40479-6 MSD

Matrix: Water

Sulfate

Sulfate

Prep Type: Total/NA Analysis Batch: 93240 MSD MSD %Rec RPD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 7.8 5.00 13.3 108 80 - 120 20 mg/L

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 670-92538/3-A

Matrix: Water

Analysis Batch: 92791

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

mg/L

mg/L

112

112

80 - 120

80 - 120

Prep Batch: 92538

0

Client Sample ID: MW-5

Client Sample ID: MW-5

мв мв

PQL Analyte Result Qualifier MDL Unit D Dil Fac Prepared Analyzed Iron 0.096 U 0.18 0.096 mg/L 05/24/24 08:35 05/24/24 16:05 Sodium 0.12 U 0.45 05/24/24 08:35 05/24/24 16:05 0.12 mg/L

Matrix: Water

Lab Sample ID: LCS 670-92538/1-A **Client Sample ID: Lab Control Sample Prep Type: Total Recoverable** Analysis Batch: 92791 Prep Batch: 92538

	Spike	LUS	LUS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Iron	 10.1	9.34		mg/L		93	85 - 115
Sodium	10.1	10.2		mg/L		101	85 - 115

Lab Sample ID: LCSD 670-92538/2-A

Matrix: Water

Analysis Batch: 92791

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable** Prep Batch: 92538

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	10.1	9.90		mg/L		98	85 - 115	6	20
Sodium	10.1	10.5		mg/L		104	85 - 115	3	20

M

Lab Sample ID: 670-40435-A-4-D MS	Client Sample ID: Matrix Spike
Matrix: Water	Prep Type: Total Recoverable
Analysis Batch: 92791	Prep Batch: 92538

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	13		11.2	24.6		mg/L		101	70 - 130	
Sodium	7.5		11.2	19.1		mg/L		103	70 - 130	

Eurofins Orlando

Job ID: 670-40479-1

Client: Dominion, Inc. Project/Site: 1503.01

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 670-40435-A-4-E MSD

Matrix: Water

Analysis Batch: 92791

Client Sampl	e ID:	Matrix	Spike	Duplicate
_	_			

Prep Type: Total Recoverable

Prep Batch: 92538

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	13		11.2	24.3		mg/L		99	70 - 130	1	20
Sodium	7.5		11.2	19.0		mg/L		102	70 - 130	1	20

Lab Sample ID: MB 670-92595/3-A

Matrix: Water

Analysis Batch: 92791

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 92595

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.096	U	0.18	0.096	mg/L		05/24/24 10:41	05/24/24 17:27	1
Sodium	0.12	U	0.45	0.12	mg/L		05/24/24 10:41	05/24/24 17:27	1

мв мв

Lab Sample ID: LCS 670-92595/1-A

Matrix: Water

Analysis Batch: 92791

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 92595

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit D %Rec Limits Iron 10.1 9.77 97 85 - 115 mg/L 10 1 Sodium 10.4 mg/L 103 85 - 115

Lab Sample ID: LCSD 670-92595/2-A

Matrix: Water

Analysis Batch: 92791

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

Prep Batch: 92595

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Iron	10.1	9.98	mg/L	_	99	85 - 115	2	20
Sodium	10.1	10.5	mg/L		104	85 - 115	1	20

Lab Sample ID: 670-40479-5 MS

Matrix: Water

Analysis Batch: 92791

Client Sample ID: CW-4

Prep Type: Total Recoverable

Prep Batch: 92595

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	3.0		11.2	14.5		mg/L		103	70 - 130	
Sodium	140		11.2	148		mg/L		81	70 - 130	

Lab Sample ID: 670-40479-5 MSD

Matrix: Water

Analysis Batch: 92791

Client Sample ID: CW-4 **Prep Type: Total Recoverable**

Prep Batch: 92595

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Iron	3.0		11.2	14.7		mg/L		104	70 - 130	1	20	
Sodium	140		11.2	149		mg/L		88	70 - 130	1	20	

Lab Sample ID: MB 670-92669/3-A

Matrix: Water

Analysis Batch: 92987

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 92669

Result Qualifier PQL Dil Fac Analyte MDL Unit D Prepared Analyzed 0.096 U 0.18 05/24/24 15:35 05/28/24 11:55 Iron 0.096 mg/L 0.12 U 0.45 05/24/24 15:35 05/28/24 11:55 Sodium 0.12 mg/L

MB MB

Eurofins Orlando

Page 46 of 72

6/7/2024

Job ID: 670-40479-1

114

Client Sample ID: Lab Control Sample

85 - 115

Prep Type: Total Recoverable

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Prep Batch: 92669

Client Sample ID: Lab Control Sample Dup

Client: Dominion, Inc. Project/Site: 1503.01

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: LCS 670-92669/1-A

Matrix: Water						Prep	Type: Tota	I Recoverable
Analysis Batch: 92987							Prep	Batch: 92669
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	10.1	10.7		mg/L		106	85 - 115	

11.5

mg/L

10.1

Lab Sample ID: LCSD 670-92669/2-A

Matrix: Water

Sodium

Analysis Batch: 92987							Prep	Batch:	92669	
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Iron	10.1	10.6		mg/L		105	85 - 115	0	20	
Sodium	10.1	11.6		ma/L		114	85 - 115	1	20	

Lab Sample ID: 670-40529-B-1-A MS

Matrix: Water

Analysis Batch: 92987

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	0.11	U	11.2	11.8		mg/L		106	70 - 130	
Sodium	48		11.2	60.0		mg/L		111	70 - 130	

Lab Sample ID: 670-40529-B-1-B MSD

Matrix: Water

Analysis Batch: 9	2987								Prep	Batch:	92669
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	0.11	U	11.2	11.8		mg/L		105	70 - 130	0	20
Sodium	48		11.2	60.5		mg/L		114	70 - 130	1	20

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 670-92533/3-A					Client Sa	mple ID: Meth	od Blank	
Matrix: Water						Prep T	ype: Total Rec	overable
Analysis Batch: 93026							Prep Bato	ch: 92533
•	МВ	MB					•	
Analyto	Posult	Qualifier	P∩I	MDI Unit	n	Dronarod	Analyzod	Dil Fac

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.0031	U	0.036	0.0031	mg/L		05/24/24 08:33	05/28/24 16:59	1
Arsenic	0.00035	U	0.0036	0.00035	mg/L		05/24/24 08:33	05/28/24 16:59	1
Cadmium	0.00022	U	0.00090	0.00022	mg/L		05/24/24 08:33	05/28/24 16:59	1
Chromium	0.00035	U	0.0018	0.00035	mg/L		05/24/24 08:33	05/28/24 16:59	1
Lead	0.00022	U	0.0018	0.00022	mg/L		05/24/24 08:33	05/28/24 16:59	1

Lab Sample ID: LCS 670-92533/1-A

Matrix: Water

Analysis Batch: 93026							Prep B	Batch: 92533
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5.00	5.41		mg/L		108	85 - 115	
Arsenic	0.100	0.100		mg/L		100	85 - 115	
Cadmium	0.100	0.101		mg/L		101	85 - 115	
Chromium	0.100	0.106		mg/L		106	85 - 115	
Lead	0.100	0.101		mg/L		101	85 - 115	

Eurofins Orlando

Page 47 of 72 6/7/2024

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: LCSD 670-92533/2-A

Analysis Batch: 93026

Matrix: Water

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

Prep Batch: 92533

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	5.00	5.29		mg/L		106	85 - 115	2	20
Arsenic	0.100	0.100		mg/L		100	85 - 115	0	20
Cadmium	0.100	0.0987		mg/L		99	85 - 115	2	20
Chromium	0.100	0.106		mg/L		106	85 - 115	0	20
Lead	0.100	0.100		mg/L		100	85 - 115	1	20

Lab Sample ID: 670-40435-A-4-A MS

Matrix: Water

Analysis Batch: 93026

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable**

Prep Batch: 92533

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	0.0051	ı	5.56	5.87		mg/L		106	70 - 130	
Arsenic	0.010		0.111	0.122		mg/L		101	70 - 130	
Cadmium	0.00025	U	0.111	0.111		mg/L		100	70 - 130	
Chromium	0.00039	U	0.111	0.118		mg/L		106	70 - 130	
Lead	0.00024	U	0.111	0.114		mg/L		103	70 - 130	

Lab Sample ID: 670-40435-A-4-B MSD

Matrix: Water

Analysis Batch: 93026

Client Sample ID: Matrix Spike Duplicate **Prep Type: Total Recoverable**

Prep Batch: 92533

Sample Sample MSD MSD RPD Spike %Rec Result Qualifier Limit Analyte Added Result Qualifier Limits RPD Unit %Rec Aluminum 0.0051 I 5.56 5.79 mg/L 104 70 - 130 20 Arsenic 0.010 0.111 0.122 mg/L 100 70 - 130 20 Cadmium 0.00025 U 0.111 0.114 mg/L 103 70 - 130 3 20 Chromium 0.00039 U 0.111 0.120 mg/L 108 70 - 130 2 20 0.00024 U Lead 0.111 0.112 mg/L 101 70 - 130 20

Lab Sample ID: MB 670-92596/3-A

Matrix: Water

Analysis Batch: 93026

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 92596

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.0031	U	0.036	0.0031	mg/L		05/24/24 10:43	05/28/24 17:34	1
Arsenic	0.00035	U	0.0036	0.00035	mg/L		05/24/24 10:43	05/28/24 17:34	1
Cadmium	0.00022	U	0.00090	0.00022	mg/L		05/24/24 10:43	05/28/24 17:34	1
Chromium	0.00035	U	0.0018	0.00035	mg/L		05/24/24 10:43	05/28/24 17:34	1
Lead	0.00022	U	0.0018	0.00022	mg/L		05/24/24 10:43	05/28/24 17:34	1

Lab Sample ID: LCS 670-92596/1-A

Matrix: Water

Analysis Batch: 93026

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 92596

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5.00	5.30		mg/L		106	85 _ 115	
Arsenic	0.100	0.0982		mg/L		98	85 - 115	
Cadmium	0.100	0.101		mg/L		101	85 - 115	
Chromium	0.100	0.108		mg/L		108	85 - 115	
Lead	0.100	0.101		mg/L		101	85 - 115	

Eurofins Orlando

Page 48 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 670-92596/2-A

Matrix: Water

Project/Site: 1503.01

Analysis Batch: 93026

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Recoverable

Prep Batch: 92596

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	5.00	5.31		mg/L		106	85 - 115	0	20
Arsenic	0.100	0.0983		mg/L		98	85 - 115	0	20
Cadmium	0.100	0.0997		mg/L		100	85 - 115	1	20
Chromium	0.100	0.108		mg/L		108	85 - 115	1	20
Lead	0.100	0.101		mg/L		101	85 - 115	1	20

Lab Sample ID: 670-40479-5 MS

Matrix: Water

Analysis Batch: 93026

Client Sample ID: CW-4 **Prep Type: Total Recoverable**

Prep Batch: 92596

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	0.089		5.56	5.92		mg/L		105	70 - 130	
Arsenic	0.0098		0.111	0.123		mg/L		102	70 - 130	
Cadmium	0.00025	U	0.111	0.111		mg/L		100	70 - 130	
Chromium	0.0025		0.111	0.122		mg/L		108	70 - 130	
Lead	0.00024	U	0.111	0.111		mg/L		100	70 - 130	

Lab Sample ID: 670-40479-5 MSD

Matrix: Water

Analysis Batch: 93026

Client Sample ID: CW-4 **Prep Type: Total Recoverable**

Prep Batch: 92596

7											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	0.089		5.56	6.03		mg/L		107	70 - 130	2	20
Arsenic	0.0098		0.111	0.122		mg/L		101	70 - 130	1	20
Cadmium	0.00025	U	0.111	0.109		mg/L		98	70 - 130	2	20
Chromium	0.0025		0.111	0.124		mg/L		110	70 - 130	2	20
Lead	0.00024	U	0.111	0.110		mg/L		99	70 - 130	0	20

Lab Sample ID: MB 670-92670/3-A

Matrix: Water

Analysis Batch: 93026

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 92670

Analyte Result Qualifier POL MDL Unit Dil Fac D Prepared Analyzed Aluminum 0.00396 I 0.036 0.0031 mg/L 05/24/24 15:38 05/28/24 21:15 Arsenic 0.00035 U 0.0036 0.00035 mg/L 05/24/24 15:38 05/28/24 21:15 0.00022 mg/L Cadmium 0.00022 U 0.00090 05/24/24 15:38 05/28/24 21:15 Chromium 0.000371 I 0.0018 0.00035 mg/L 05/24/24 15:38 05/28/24 21:15 Lead 0.00022 U 0.0018 0.00022 mg/L 05/24/24 15:38 05/28/24 21:15

MB MB

Lab Sample ID: LCS 670-92670/1-A

Matrix: Water

Analysis Batch: 93026

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 92670

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5.00	5.23		mg/L		105	85 - 115	
Arsenic	0.100	0.0964		mg/L		96	85 - 115	
Cadmium	0.100	0.0987		mg/L		99	85 - 115	
Chromium	0.100	0.105		mg/L		105	85 - 115	
Lead	0.100	0 100		ma/L		100	85 - 115	

Eurofins Orlando

Page 49 of 72

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Matrix: Water

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 670-92670/2-A

Analysis Batch: 93026

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Recoverable

Prep Batch: 92670

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	5.00	5.12		mg/L		102	85 - 115	2	20
Arsenic	0.100	0.0968		mg/L		97	85 - 115	0	20
Cadmium	0.100	0.0996		mg/L		100	85 - 115	1	20
Chromium	0.100	0.104		mg/L		104	85 - 115	1	20
Lead	0.100	0.101		mg/L		101	85 - 115	0	20

Lab Sample ID: 670-40529-B-1-D MS

Matrix: Water

Analysis Batch: 93026

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable**

Prep Batch: 92670

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	0.25		5.56	5.86		mg/L		101	70 - 130	
Arsenic	0.00039	U	0.111	0.107		mg/L		97	70 - 130	
Cadmium	0.00025	U	0.111	0.108		mg/L		98	70 - 130	
Chromium	0.0042		0.111	0.118		mg/L		102	70 - 130	
Lead	0.00024	U	0.111	0.110		mg/L		99	70 - 130	

Lab Sample ID: 670-40529-B-1-E MSD

Matrix: Water

Analysis Batch: 93026

Client Sample ID: Matrix Spike Duplicate **Prep Type: Total Recoverable**

Prep Batch: 92670

,											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	0.25		5.56	5.91		mg/L		102	70 - 130	1	20
Arsenic	0.00039	U	0.111	0.107		mg/L		97	70 - 130	0	20
Cadmium	0.00025	U	0.111	0.110		mg/L		99	70 - 130	1	20
Chromium	0.0042		0.111	0.118		mg/L		102	70 - 130	0	20
Lead	0.00024	U	0.111	0.111		mg/L		100	70 - 130	1	20

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 670-92585/12-A

Matrix: Water

Analysis Batch: 92657

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 92585

Result Qualifier PQL MDL Unit Dil Fac Analyte Prepared Analyzed 0.00020 U 0.00040 05/24/24 09:59 05/24/24 13:46 Mercury 0.00020 mg/L

MB MB

Lab Sample ID: LCS 670-92585/10-A

Matrix: Water

Analysis Batch: 92657

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 92585

Prep Type: Total/NA

Spike LCS LCS Added Analyte Result Qualifier %Rec Limits Unit D Mercury 0.00500 0.00510 mg/L 102 85 - 115

Lab Sample ID: LCSD 670-92585/11-A

Matrix: Water

Analysis Batch: 92657 Prep Batch: 92585 Spike LCSD LCSD %Rec RPD Added Result Qualifier Limit Analyte Unit %Rec Limits RPD Mercury 0.00500 0.00499 100 mg/L

Eurofins Orlando

6/7/2024

Page 50 of 72

QC Sample Results Client: Dominion, Inc. Job ID: 670-40479-1 Project/Site: 1503.01 Method: 245.1 - Mercury (CVAA) Lab Sample ID: 670-40479-2 MS Client Sample ID: MW-2 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 92657 Prep Batch: 92585 Sample Sample MS MS Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.00020 U 0.00500 0.00552 mg/L 110 80 - 120 Lab Sample ID: 670-40479-2 MSD Client Sample ID: MW-2 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 92657** Prep Batch: 92585 Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Limit Analyte Added Result Qualifier Unit D %Rec Limits RPD Mercury 0.00020 U 0.00500 0.00545 mg/L 109 80 - 120 20 Method: 350.1 - Nitrogen, Ammonia Lab Sample ID: MB 670-94270/35 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 94270** MB MB Analyte Result Qualifier POL MDL Unit D Prepared Analyzed Dil Fac Ammonia (as N) 0.014 U 0.020 0.014 mg/L 06/05/24 18:40 Lab Sample ID: MB 670-94270/7 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 94270 мв мв Dil Fac Analyte Result Qualifier PQL MDL Unit Prepared Analyzed 0.014 U 0.020 0.014 mg/L 06/05/24 17:32 Ammonia (as N) Lab Sample ID: LCS 670-94270/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 94270** Spike LCS LCS %Rec Added Analyte Result Qualifier Unit Limits Ammonia (as N) 0.500 0.492 90 - 110 mg/L Lab Sample ID: LCS 670-94270/33 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 94270**

Matrix: Water Prep Type: Total/NA **Analysis Batch: 94270** Spike LCSD LCSD %Rec **RPD** Analyte babbA Result Qualifier Unit D %Rec Limits RPD Limit Ammonia (as N) 0.500 0.522 mg/L

Spike

Added

0.500

Analyte

Ammonia (as N)

Lab Sample ID: LCSD 670-94270/34

LCS LCS

0.511

Result Qualifier

Unit

mg/L

Eurofins Orlando

%Rec

Limits

90 - 110

Client Sample ID: Lab Control Sample Dup

%Rec

Job ID: 670-40479-1

Client: Dominion, Inc.

Project/Site: 1503.01

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LCSD 670-94270/6 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 94270

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	i
Ammonia (as N)	0.500	0.475		mg/L		95	90 - 110	4	20	

Lab Sample ID: 185-1246-A-7 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 94270

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia (as N)	0.43	J	0.500	0.721	J	mg/L		59	90 - 110	

Lab Sample ID: 185-1246-A-12 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 94270

%Rec Spike MS MS Sample Sample Analyte Result Qualifier Added Result Qualifier Unit Limits 0.87 J 0.500 0.912 J Ammonia (as N) mg/L 90 - 110

Lab Sample ID: MB 670-94436/34 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 94436

мв мв Result Qualifier PQL MDL Unit Analyte Prepared

MR MR

Dil Fac Analyzed 0.020 06/06/24 08:36 Ammonia (as N) 0.014 U 0.014 mg/L

Lab Sample ID: MB 670-94436/7 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 94436

PQL Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac 0.014 U 0.020 Ammonia (as N) 0.014 mg/L 06/05/24 21:47

Lab Sample ID: LCS 670-94436/3 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 94436

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Ammonia (as N) 0.500 0.452 mg/L 90 - 110

Lab Sample ID: LCS 670-94436/32 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 94436

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia (as N)	0.500	0.458		mg/L		92	90 - 110	

Lab Sample ID: LCSD 670-94436/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 94436

Ammonia (as N)

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit

0.479

mg/L

96

90 - 110

0.500

QC Sample Results Client: Dominion, Inc. Job ID: 670-40479-1 Project/Site: 1503.01 Method: 350.1 - Nitrogen, Ammonia Lab Sample ID: 185-1237-B-5 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 94436** Sample Sample Spike MS MS %Rec Result Qualifier Analyte babbA Result Qualifier Unit %Rec Limits Ammonia (as N) 0.014 UJ 0.500 0.014 UJ mg/L 90 - 110 Lab Sample ID: MB 670-94561/7 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 94561 MB MB POL Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Ammonia (as N) 0.014 U 0.020 0.014 mg/L 06/06/24 20:38 Lab Sample ID: LCS 670-94561/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 94561 LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits 0.500 0.533 Ammonia (as N) mg/L 107 90 - 110 Lab Sample ID: LCSD 670-94561/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA Analysis Batch: 94561 LCSD LCSD RPD Spike %Rec Limit

Added Result Qualifier RPD Analyte Unit %Rec Limits Ammonia (as N) 0.500 0.517 103 90 - 110 mg/L

Lab Sample ID: 660-136123-B-3 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA Analysis Batch: 94561

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ammonia (as N) 4.7 J 50.0 4.59 J mg/L -0.2 90 - 110

Lab Sample ID: 670-40312-A-1 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA Analysis Batch: 94561

Sample Sample Spike MSD MSD %Rec **RPD** Added Result Qualifier RPD Analyte Result Qualifier Unit D %Rec Limits Limit Ammonia (as N) 4.2 50.0 3.90 J. mg/L -0.5 90 - 110 20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 670-93061/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 93061 MB MB Analyte Result Qualifier PQL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids 5.0 U 5.0 5.0 mg/L 05/29/24 10:11

QC Sample Results

Client: Dominion, Inc. Job ID: 670-40479-1 Project/Site: 1503.01 Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued) Lab Sample ID: LCS 670-93061/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 93061 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Total Dissolved Solids 1500 1480 mg/L 99 80 - 120 Lab Sample ID: 670-40529-A-1 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA Analysis Batch: 93061 Sample Sample DU DU RPD Result Qualifier Result Qualifier RPD Limit Analyte Unit **Total Dissolved Solids** 140 160 mg/L 11 20 Lab Sample ID: MB 670-93077/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 93077** мв мв Result Qualifier **PQL** MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids 5.0 U 5.0 5.0 mg/L 05/29/24 11:05

Lab Sample ID: LCS 670-93077/2	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 93077	

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 1500 1450

Lab Sample ID: 670-40529-A-3 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

mg/L

Analysis Batch: 93077

Total Dissolved Solids

DU DU RPD Sample Sample Result Qualifier Analyte Result Qualifier Unit RPD Limit Total Dissolved Solids 220 200 mg/L 20

Eurofins Orlando

80 - 120

Client: Dominion, Inc. Job ID: 670-40479-1 Project/Site: 1503.01

GC/MS VOA

Analysis Batch: 93447

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total/NA	Water	8260D	
670-40479-2	MW-2	Total/NA	Water	8260D	
670-40479-3	MW-3R	Total/NA	Water	8260D	
670-40479-4	MW-4	Total/NA	Water	8260D	
670-40479-5	CW-4	Total/NA	Water	8260D	
670-40479-6	MW-5	Total/NA	Water	8260D	
670-40479-7	MW-6	Total/NA	Water	8260D	
670-40479-8	MW-7	Total/NA	Water	8260D	
670-40479-9	MW-8	Total/NA	Water	8260D	
670-40479-10	TW-7	Total/NA	Water	8260D	
670-40479-11	TW-8	Total/NA	Water	8260D	
670-40479-12	TW-11	Total/NA	Water	8260D	
MB 670-93447/7	Method Blank	Total/NA	Water	8260D	
LCS 670-93447/4	Lab Control Sample	Total/NA	Water	8260D	
660-136331-K-2 MS	Matrix Spike	Total/NA	Water	8260D	
660-136331-K-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

HPLC/IC

Analysis Batch: 92534

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
670-40479-1	MW-1R	Total/NA	Water	300.0	
670-40479-2	MW-2	Total/NA	Water	300.0	
670-40479-3	MW-3R	Total/NA	Water	300.0	
670-40479-4	MW-4	Total/NA	Water	300.0	
670-40479-5	CW-4	Total/NA	Water	300.0	
670-40479-6	MW-5	Total/NA	Water	300.0	
670-40479-7	MW-6	Total/NA	Water	300.0	
670-40479-8	MW-7	Total/NA	Water	300.0	
670-40479-9	MW-8	Total/NA	Water	300.0	
670-40479-10	TW-7	Total/NA	Water	300.0	
670-40479-11	TW-8	Total/NA	Water	300.0	
670-40479-12	TW-11	Total/NA	Water	300.0	
MB 670-92534/105	Method Blank	Total/NA	Water	300.0	
MB 670-92534/37	Method Blank	Total/NA	Water	300.0	
MB 670-92534/6	Method Blank	Total/NA	Water	300.0	
MB 670-92534/68	Method Blank	Total/NA	Water	300.0	
LCS 670-92534/103	Lab Control Sample	Total/NA	Water	300.0	
LCS 670-92534/35	Lab Control Sample	Total/NA	Water	300.0	
LCS 670-92534/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 670-92534/104	Lab Control Sample Dup	Total/NA	Water	300.0	
LCSD 670-92534/36	Lab Control Sample Dup	Total/NA	Water	300.0	
LCSD 670-92534/5	Lab Control Sample Dup	Total/NA	Water	300.0	
670-40479-2 MS	MW-2	Total/NA	Water	300.0	
670-40479-2 MSD	MW-2	Total/NA	Water	300.0	
670-40479-6 MS	MW-5	Total/NA	Water	300.0	
670-40479-6 MSD	MW-5	Total/NA	Water	300.0	

Analysis Batch: 92535

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total/NA	Water	300.0	

Eurofins Orlando

Page 55 of 72

Client: Dominion, Inc.

Project/Site: 1503.01

Job ID: 670-40479-1

HPLC/IC (Continued)

Analysis Batch: 92535 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-2	MW-2	Total/NA	Water	300.0	
670-40479-3	MW-3R	Total/NA	Water	300.0	
670-40479-3	MW-3R	Total/NA	Water	300.0	
670-40479-4	MW-4	Total/NA	Water	300.0	
670-40479-5	CW-4	Total/NA	Water	300.0	
670-40479-6	MW-5	Total/NA	Water	300.0	
670-40479-7	MW-6	Total/NA	Water	300.0	
670-40479-8	MW-7	Total/NA	Water	300.0	
670-40479-9	MW-8	Total/NA	Water	300.0	
670-40479-10	TW-7	Total/NA	Water	300.0	
670-40479-11	TW-8	Total/NA	Water	300.0	
670-40479-12	TW-11	Total/NA	Water	300.0	
MB 670-92535/105	Method Blank	Total/NA	Water	300.0	
MB 670-92535/37	Method Blank	Total/NA	Water	300.0	
MB 670-92535/6	Method Blank	Total/NA	Water	300.0	
MB 670-92535/68	Method Blank	Total/NA	Water	300.0	
LCS 670-92535/103	Lab Control Sample	Total/NA	Water	300.0	
LCS 670-92535/35	Lab Control Sample	Total/NA	Water	300.0	
LCS 670-92535/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 670-92535/104	Lab Control Sample Dup	Total/NA	Water	300.0	
LCSD 670-92535/36	Lab Control Sample Dup	Total/NA	Water	300.0	
LCSD 670-92535/5	Lab Control Sample Dup	Total/NA	Water	300.0	
670-40479-2 MS	MW-2	Total/NA	Water	300.0	
670-40479-2 MSD	MW-2	Total/NA	Water	300.0	
670-40479-6 MS	MW-5	Total/NA	Water	300.0	
670-40479-6 MSD	MW-5	Total/NA	Water	300.0	

Analysis Batch: 93240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 670-93240/6	Method Blank	Total/NA	Water	300.0	
LCS 670-93240/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 670-93240/5	Lab Control Sample Dup	Total/NA	Water	300.0	
670-40479-6 MS	MW-5	Total/NA	Water	300.0	
670-40479-6 MSD	MW-5	Total/NA	Water	300.0	

Metals

Prep Batch: 92533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total Recoverable	Water	200.8	
670-40479-2	MW-2	Total Recoverable	Water	200.8	
670-40479-3	MW-3R	Total Recoverable	Water	200.8	
670-40479-4	MW-4	Total Recoverable	Water	200.8	
MB 670-92533/3-A	Method Blank	Total Recoverable	Water	200.8	
LCS 670-92533/1-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 670-92533/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	
670-40435-A-4-A MS	Matrix Spike	Total Recoverable	Water	200.8	
670-40435-A-4-B MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.8	

Eurofins Orlando

Page 56 of 72

2

3

5

9

10

12

13

14

Client: Dominion, Inc. Job ID: 670-40479-1 Project/Site: 1503.01

Metals

Prep Batch: 92538

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total Recoverable	Water	200.7	
670-40479-2	MW-2	Total Recoverable	Water	200.7	
670-40479-3	MW-3R	Total Recoverable	Water	200.7	
670-40479-4	MW-4	Total Recoverable	Water	200.7	
MB 670-92538/3-A	Method Blank	Total Recoverable	Water	200.7	
LCS 670-92538/1-A	Lab Control Sample	Total Recoverable	Water	200.7	
LCSD 670-92538/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.7	
670-40435-A-4-D MS	Matrix Spike	Total Recoverable	Water	200.7	
670-40435-A-4-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7	

Prep Batch: 92585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total/NA	Water	245.1	
670-40479-2	MW-2	Total/NA	Water	245.1	
670-40479-3	MW-3R	Total/NA	Water	245.1	
670-40479-4	MW-4	Total/NA	Water	245.1	
670-40479-5	CW-4	Total/NA	Water	245.1	
670-40479-6	MW-5	Total/NA	Water	245.1	
670-40479-7	MW-6	Total/NA	Water	245.1	
670-40479-8	MW-7	Total/NA	Water	245.1	
670-40479-9	MW-8	Total/NA	Water	245.1	
670-40479-10	TW-7	Total/NA	Water	245.1	
670-40479-11	TW-8	Total/NA	Water	245.1	
670-40479-12	TW-11	Total/NA	Water	245.1	
MB 670-92585/12-A	Method Blank	Total/NA	Water	245.1	
LCS 670-92585/10-A	Lab Control Sample	Total/NA	Water	245.1	
LCSD 670-92585/11-A	Lab Control Sample Dup	Total/NA	Water	245.1	
670-40479-2 MS	MW-2	Total/NA	Water	245.1	
670-40479-2 MSD	MW-2	Total/NA	Water	245.1	

Prep Batch: 92595

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
670-40479-5	CW-4	Total Recoverable	Water	200.7	
670-40479-6	MW-5	Total Recoverable	Water	200.7	
670-40479-7	MW-6	Total Recoverable	Water	200.7	
670-40479-8	MW-7	Total Recoverable	Water	200.7	
670-40479-9	MW-8	Total Recoverable	Water	200.7	
670-40479-10	TW-7	Total Recoverable	Water	200.7	
670-40479-11	TW-8	Total Recoverable	Water	200.7	
670-40479-12	TW-11	Total Recoverable	Water	200.7	
MB 670-92595/3-A	Method Blank	Total Recoverable	Water	200.7	
LCS 670-92595/1-A	Lab Control Sample	Total Recoverable	Water	200.7	
LCSD 670-92595/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.7	
670-40479-5 MS	CW-4	Total Recoverable	Water	200.7	
670-40479-5 MSD	CW-4	Total Recoverable	Water	200.7	

Prep Batch: 92596

Lab Sample ID 670-40479-5	Client Sample ID CW-4	Prep Type Total Recoverable	Matrix Water	Method 200.8	Prep Batch
670-40479-6	MW-5	Total Recoverable	Water	200.8	
670-40479-7	MW-6	Total Recoverable	Water	200.8	

Page 57 of 72

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Metals (Continued)

Prep Batch: 92596 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-8	MW-7	Total Recoverable	Water	200.8	
670-40479-9	MW-8	Total Recoverable	Water	200.8	
670-40479-10	TW-7	Total Recoverable	Water	200.8	
670-40479-11	TW-8	Total Recoverable	Water	200.8	
670-40479-12	TW-11	Total Recoverable	Water	200.8	
MB 670-92596/3-A	Method Blank	Total Recoverable	Water	200.8	
LCS 670-92596/1-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 670-92596/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	
670-40479-5 MS	CW-4	Total Recoverable	Water	200.8	
670-40479-5 MSD	CW-4	Total Recoverable	Water	200.8	

Analysis Batch: 92657

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total/NA	Water	245.1	92585
670-40479-2	MW-2	Total/NA	Water	245.1	92585
670-40479-3	MW-3R	Total/NA	Water	245.1	92585
670-40479-4	MW-4	Total/NA	Water	245.1	92585
670-40479-5	CW-4	Total/NA	Water	245.1	92585
670-40479-6	MW-5	Total/NA	Water	245.1	92585
670-40479-7	MW-6	Total/NA	Water	245.1	92585
670-40479-8	MW-7	Total/NA	Water	245.1	92585
670-40479-9	MW-8	Total/NA	Water	245.1	92585
670-40479-10	TW-7	Total/NA	Water	245.1	92585
670-40479-11	TW-8	Total/NA	Water	245.1	92585
670-40479-12	TW-11	Total/NA	Water	245.1	92585
MB 670-92585/12-A	Method Blank	Total/NA	Water	245.1	92585
LCS 670-92585/10-A	Lab Control Sample	Total/NA	Water	245.1	92585
LCSD 670-92585/11-A	Lab Control Sample Dup	Total/NA	Water	245.1	92585
670-40479-2 MS	MW-2	Total/NA	Water	245.1	92585
670-40479-2 MSD	MW-2	Total/NA	Water	245.1	92585

Prep Batch: 92669

Lab Sample ID MB 670-92669/3-A	Client Sample ID Method Blank	Prep Type Total Recoverable	Matrix Water	Method 200.7	Prep Batch
LCS 670-92669/1-A	Lab Control Sample	Total Recoverable	Water	200.7	
LCSD 670-92669/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.7	
670-40529-B-1-A MS	Matrix Spike	Total Recoverable	Water	200.7	
670-40529-B-1-B MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7	

Prep Batch: 92670

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 670-92670/3-A	Method Blank	Total Recoverable	Water	200.8	
LCS 670-92670/1-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 670-92670/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	
670-40529-B-1-D MS	Matrix Spike	Total Recoverable	Water	200.8	
670-40529-B-1-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.8	

Analysis Batch: 92791

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total Recoverable	Water	200.7 Rev 4.4	92538
670-40479-2	MW-2	Total Recoverable	Water	200.7 Rev 4.4	92538

Eurofins Orlando

Page 58 of 72 6/7/2024

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

Metals (Continued)

Analysis Batch: 92791 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-3	MW-3R	Total Recoverable	Water	200.7 Rev 4.4	92538
670-40479-4	MW-4	Total Recoverable	Water	200.7 Rev 4.4	92538
670-40479-5	CW-4	Total Recoverable	Water	200.7 Rev 4.4	92595
670-40479-6	MW-5	Total Recoverable	Water	200.7 Rev 4.4	92595
670-40479-7	MW-6	Total Recoverable	Water	200.7 Rev 4.4	92595
670-40479-8	MW-7	Total Recoverable	Water	200.7 Rev 4.4	92595
670-40479-9	MW-8	Total Recoverable	Water	200.7 Rev 4.4	92595
670-40479-10	TW-7	Total Recoverable	Water	200.7 Rev 4.4	92595
670-40479-11	TW-8	Total Recoverable	Water	200.7 Rev 4.4	92595
670-40479-12	TW-11	Total Recoverable	Water	200.7 Rev 4.4	92595
MB 670-92538/3-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	92538
MB 670-92595/3-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	92595
LCS 670-92538/1-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	92538
LCS 670-92595/1-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	92595
LCSD 670-92538/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.7 Rev 4.4	92538
LCSD 670-92595/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.7 Rev 4.4	92595
670-40435-A-4-D MS	Matrix Spike	Total Recoverable	Water	200.7 Rev 4.4	92538
670-40435-A-4-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7 Rev 4.4	92538
670-40479-5 MS	CW-4	Total Recoverable	Water	200.7 Rev 4.4	92595
670-40479-5 MSD	CW-4	Total Recoverable	Water	200.7 Rev 4.4	92595

Analysis Batch: 92987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
MB 670-92669/3-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	92669	
LCS 670-92669/1-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	92669	
LCSD 670-92669/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.7 Rev 4.4	92669	
670-40529-B-1-A MS	Matrix Spike	Total Recoverable	Water	200.7 Rev 4.4	92669	
670-40529-B-1-B MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7 Rev 4.4	92669	

Analysis Batch: 93026

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total Recoverable	Water	200.8	92533
670-40479-2	MW-2	Total Recoverable	Water	200.8	92533
670-40479-3	MW-3R	Total Recoverable	Water	200.8	92533
670-40479-4	MW-4	Total Recoverable	Water	200.8	92533
670-40479-5	CW-4	Total Recoverable	Water	200.8	92596
670-40479-6	MW-5	Total Recoverable	Water	200.8	92596
670-40479-7	MW-6	Total Recoverable	Water	200.8	92596
670-40479-8	MW-7	Total Recoverable	Water	200.8	92596
670-40479-9	MW-8	Total Recoverable	Water	200.8	92596
670-40479-10	TW-7	Total Recoverable	Water	200.8	92596
670-40479-11	TW-8	Total Recoverable	Water	200.8	92596
670-40479-12	TW-11	Total Recoverable	Water	200.8	92596
MB 670-92533/3-A	Method Blank	Total Recoverable	Water	200.8	92533
MB 670-92596/3-A	Method Blank	Total Recoverable	Water	200.8	92596
MB 670-92670/3-A	Method Blank	Total Recoverable	Water	200.8	92670
LCS 670-92533/1-A	Lab Control Sample	Total Recoverable	Water	200.8	92533
LCS 670-92596/1-A	Lab Control Sample	Total Recoverable	Water	200.8	92596
LCS 670-92670/1-A	Lab Control Sample	Total Recoverable	Water	200.8	92670
LCSD 670-92533/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	92533
LCSD 670-92596/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	92596

Eurofins Orlando

Page 59 of 72

2

3

4

6

8

11

12

1 1

Client: Dominion, Inc. Job ID: 670-40479-1 Project/Site: 1503.01

Metals (Continued)

Analysis Batch: 93026 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 670-92670/2-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	92670
670-40435-A-4-A MS	Matrix Spike	Total Recoverable	Water	200.8	92533
670-40435-A-4-B MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.8	92533
670-40479-5 MS	CW-4	Total Recoverable	Water	200.8	92596
670-40479-5 MSD	CW-4	Total Recoverable	Water	200.8	92596
670-40529-B-1-D MS	Matrix Spike	Total Recoverable	Water	200.8	92670
670-40529-B-1-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.8	92670

General Chemistry

Analysis Batch: 93061

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total/NA	Water	SM 2540C	_
670-40479-2	MW-2	Total/NA	Water	SM 2540C	
670-40479-3	MW-3R	Total/NA	Water	SM 2540C	
670-40479-5	CW-4	Total/NA	Water	SM 2540C	
670-40479-6	MW-5	Total/NA	Water	SM 2540C	
670-40479-7	MW-6	Total/NA	Water	SM 2540C	
670-40479-8	MW-7	Total/NA	Water	SM 2540C	
670-40479-9	MW-8	Total/NA	Water	SM 2540C	
670-40479-10	TW-7	Total/NA	Water	SM 2540C	
670-40479-11	TW-8	Total/NA	Water	SM 2540C	
MB 670-93061/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 670-93061/2	Lab Control Sample	Total/NA	Water	SM 2540C	
670-40529-A-1 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 93077

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-4	MW-4	Total/NA	Water	SM 2540C	
670-40479-12	TW-11	Total/NA	Water	SM 2540C	
MB 670-93077/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 670-93077/2	Lab Control Sample	Total/NA	Water	SM 2540C	
670-40529-A-3 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 94270

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-3	MW-3R	Total/NA	Water	350.1	
670-40479-4	MW-4	Total/NA	Water	350.1	
670-40479-5	CW-4	Total/NA	Water	350.1	
670-40479-6	MW-5	Total/NA	Water	350.1	
670-40479-7	MW-6	Total/NA	Water	350.1	
670-40479-8	MW-7	Total/NA	Water	350.1	
670-40479-10	TW-7	Total/NA	Water	350.1	
670-40479-11	TW-8	Total/NA	Water	350.1	
670-40479-12	TW-11	Total/NA	Water	350.1	
MB 670-94270/35	Method Blank	Total/NA	Water	350.1	
MB 670-94270/7	Method Blank	Total/NA	Water	350.1	
LCS 670-94270/3	Lab Control Sample	Total/NA	Water	350.1	
LCS 670-94270/33	Lab Control Sample	Total/NA	Water	350.1	
LCSD 670-94270/34	Lab Control Sample Dup	Total/NA	Water	350.1	
LCSD 670-94270/6	Lab Control Sample Dup	Total/NA	Water	350.1	

Eurofins Orlando

Page 60 of 72

Client: Dominion, Inc.

Job ID: 670-40479-1

Project/Site: 1503.01

General Chemistry (Continued)

Analysis Batch: 94270 (Continued)

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	185-1246-A-7 MS	Matrix Spike	Total/NA	Water	350.1	
l	185-1246-A-12 MS	Matrix Spike	Total/NA	Water	350.1	

Analysis Batch: 94436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-40479-2	MW-2	Total/NA	Water	350.1	
670-40479-9	MW-8	Total/NA	Water	350.1	
MB 670-94436/34	Method Blank	Total/NA	Water	350.1	
MB 670-94436/7	Method Blank	Total/NA	Water	350.1	
LCS 670-94436/3	Lab Control Sample	Total/NA	Water	350.1	
LCS 670-94436/32	Lab Control Sample	Total/NA	Water	350.1	
LCSD 670-94436/6	Lab Control Sample Dup	Total/NA	Water	350.1	
185-1237-B-5 MS	Matrix Spike	Total/NA	Water	350.1	

Analysis Batch: 94561

Lab Sample ID	b Sample ID Client Sample ID		Matrix	Method	Prep Batch
670-40479-1	MW-1R	Total/NA	Water	350.1	 -
MB 670-94561/7	Method Blank	Total/NA	Water	350.1	
LCS 670-94561/3	Lab Control Sample	Total/NA	Water	350.1	
LCSD 670-94561/6	Lab Control Sample Dup	Total/NA	Water	350.1	
660-136123-B-3 MS	Matrix Spike	Total/NA	Water	350.1	
670-40312-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	350.1	

4

5

7

a

10

13

14

Job ID: 670-40479-1

Client: Dominion, Inc. Project/Site: 1503.01

Client Sample ID: MW-1R

Lab Sample ID: 670-40479-1

Matrix: Water

Date Collected: 05/23/24 11:15 Date Received: 05/24/24 06:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			93447	JFL	EET ORL	05/31/24 13:59
Total/NA	Analysis	300.0		1	92534	YGS	EET ORL	05/24/24 14:05
Total/NA	Analysis	300.0		1	92535	YGS	EET ORL	05/24/24 14:05
Total Recoverable	Prep	200.7			92538	JR	EET ORL	05/24/24 08:36
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:03
Total Recoverable	Prep	200.8			92533	JR	EET ORL	05/24/24 08:33
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:18
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 13:51
Total/NA	Analysis	350.1		1	94561	VJW	EET ORL	06/06/24 19:23
Total/NA	Analysis	SM 2540C		1	93061	SM	EET ORL	05/29/24 10:11

Lab Sample ID: 670-40479-2

Matrix: Water

Client Sample ID: MW-2 Date Collected: 05/23/24 13:00 Date Received: 05/24/24 06:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	93447	JFL	EET ORL	05/31/24 14:17
Total/NA	Analysis	300.0		1	92534	YGS	EET ORL	05/24/24 14:55
Total/NA	Analysis	300.0		1	92535	YGS	EET ORL	05/24/24 14:55
Total Recoverable	Prep	200.7			92538	JR	EET ORL	05/24/24 08:36
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:06
Total Recoverable	Prep	200.8			92533	JR	EET ORL	05/24/24 08:33
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:20
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 13:50
Total/NA	Analysis	350.1		1	94436	VJW	EET ORL	06/05/24 22:29
Total/NA	Analysis	SM 2540C		1	93061	SM	EET ORL	05/29/24 10:11

Client Sample ID: MW-3R

Date Collected: 05/23/24 13:50

Date Received: 05/24/24 06:40

ab S	Samp	ie iD:	670	-404	79-3	
------	------	--------	-----	-------------	------	--

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			93447	JFL	EET ORL	05/31/24 14:35
Total/NA	Analysis	300.0		1	92534	YGS	EET ORL	05/24/24 16:54
Total/NA	Analysis	300.0		1	92535	YGS	EET ORL	05/24/24 16:54
Total/NA	Analysis	300.0		10	92535	YGS	EET ORL	05/25/24 15:35
Total Recoverable	Prep	200.7			92538	JR	EET ORL	05/24/24 08:36
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:09
Total Recoverable	Prep	200.8			92533	JR	EET ORL	05/24/24 08:33
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:22

Lab Chronicle

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: MW-3R

Date Collected: 05/23/24 13:50 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-3

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 13:53
Total/NA	Analysis	350.1		20	94270	VJW	EET ORL	06/05/24 19:38
Total/NA	Analysis	SM 2540C		1	93061	SM	EET ORL	05/29/24 10:11

Client Sample ID: MW-4 Lab Sample ID: 670-40479-4

Matrix: Water

Date Received: 05/24/24 06:40

Date Collected: 05/23/24 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	93447	JFL	EET ORL	05/31/24 14:54
Total/NA	Analysis	300.0		1	92534	YGS	EET ORL	05/24/24 21:25
Total/NA	Analysis	300.0		1	92535	YGS	EET ORL	05/24/24 21:25
Total Recoverable	Prep	200.7			92538	JR	EET ORL	05/24/24 08:36
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:11
Total Recoverable	Prep	200.8			92533	JR	EET ORL	05/24/24 08:33
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:24
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 13:54
Total/NA	Analysis	350.1		100	94270	VJW	EET ORL	06/05/24 21:08
Total/NA	Analysis	SM 2540C		1	93077	SM	EET ORL	05/29/24 11:05

Client Sample ID: CW-4 Lab Sample ID: 670-40479-5 Date Collected: 05/23/24 15:05

Date Received: 05/24/24 06:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			93447	JFL	EET ORL	05/31/24 15:12
Total/NA	Analysis	300.0		10	92534	YGS	EET ORL	05/24/24 21:08
Total/NA	Analysis	300.0		10	92535	YGS	EET ORL	05/24/24 21:08
Total Recoverable	Prep	200.7			92595	JR	EET ORL	05/24/24 10:41
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:35
Total Recoverable	Prep	200.8			92596	JR	EET ORL	05/24/24 10:43
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:3
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 13:5
Total/NA	Analysis	350.1		10	94270	VJW	EET ORL	06/05/24 19:4
Total/NA	Analysis	SM 2540C		1	93061	SM	EET ORL	05/29/24 10:1

Page 63 of 72

Matrix: Water

Job ID: 670-40479-1

Client: Dominion, Inc. Project/Site: 1503.01

Client Sample ID: MW-5

Lab Sample ID: 670-40479-6

Matrix: Water

Date Collected: 05/23/24 13:25 Date Received: 05/24/24 06:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	93447	JFL	EET ORL	05/31/24 15:31
Total/NA	Analysis	300.0		1	92534	YGS	EET ORL	05/24/24 20:17
Total/NA	Analysis	300.0		1	92535	YGS	EET ORL	05/24/24 20:17
Total Recoverable	Prep	200.7			92595	JR	EET ORL	05/24/24 10:41
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:38
Total Recoverable	Prep	200.8			92596	JR	EET ORL	05/24/24 10:43
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:41
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 13:57
Total/NA	Analysis	350.1		2	94270	VJW	EET ORL	06/05/24 17:40
Total/NA	Analysis	SM 2540C		1	93061	SM	EET ORL	05/29/24 10:11

Client Sample ID: MW-6 Lab Sample ID: 670-40479-7

Matrix: Water

Total/NA

Total/NA

Date Collected: 05/23/24 11:40 Date Received: 05/24/24 06:40

Analysis

Analysis

350.1

SM 2540C

Batch Batch Dilution Batch Prepared **Prep Type** Method or Analyzed Type Run Factor Number Analyst Lab Total/NA Analysis 8260D 93447 JFL EET ORL 05/31/24 15:49 Total/NA Analysis 300.0 1 92534 YGS **EET ORL** 05/24/24 15:46 Total/NA Analysis 300.0 1 92535 YGS **EET ORL** 05/24/24 15:46 Total Recoverable Prep 200.7 92595 JR **EET ORL** 05/24/24 10:41 Total Recoverable Analysis 200.7 Rev 4.4 1 92791 AS **EET ORL** 05/24/24 17:40 Total Recoverable Prep 200.8 92596 JR **EET ORL** 05/24/24 10:43 Total Recoverable Analysis 200.8 93026 EV EET ORL 05/28/24 17:45 1 Total/NA Prep 245.1 92585 EB **EET ORL** 05/24/24 09:59 Total/NA 245.1 92657 EΒ **EET ORL** 05/24/24 13:58 Analysis 1

Client Sample ID: MW-7 Lab Sample ID: 670-40479-8

2

1

Date Collected: 05/23/24 12:10 Matrix: Water Date Received: 05/24/24 06:40

94270 VJW

93061 SM

EET ORL

EET ORL

06/05/24 19:41

05/29/24 10:11

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			93447	JFL	EET ORL	05/31/24 16:07
Total/NA	Analysis	300.0		1	92534	YGS	EET ORL	05/24/24 18:19
Total/NA	Analysis	300.0		1	92535	YGS	EET ORL	05/24/24 18:19
Total Recoverable	Prep	200.7			92595	JR	EET ORL	05/24/24 10:41
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:43
Total Recoverable	Prep	200.8			92596	JR	EET ORL	05/24/24 10:43
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:46
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 14:00

Eurofins Orlando

Job ID: 670-40479-1

Client: Dominion, Inc.
Project/Site: 1503.01

Client Sample ID: MW-7

Lab Sample ID: 670-40479-8

Matrix: Water

Date Collected: 05/23/24 12:10 Date Received: 05/24/24 06:40

	Batch Batch			Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	350.1		10	94270	VJW	EET ORL	06/05/24 19:44
Total/NA	Analysis	SM 2540C		1	93061	SM	EET ORL	05/29/24 10:11

Lab Sample ID: 670-40479-9

-ab cample ib. 070-40475-5

Matrix: Water

Date Collected: 05/23/24 12:35
Date Received: 05/24/24 06:40

Batch

Client Sample ID: MW-8

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	93447	JFL	EET ORL	05/31/24 16:26
Total/NA	Analysis	300.0		1	92534	YGS	EET ORL	05/24/24 18:35
Total/NA	Analysis	300.0		1	92535	YGS	EET ORL	05/24/24 18:35
Total Recoverable	Prep	200.7			92595	JR	EET ORL	05/24/24 10:41
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:46
Total Recoverable	Prep	200.8			92596	JR	EET ORL	05/24/24 10:43
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:48
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 14:01
Total/NA	Analysis	350.1		1	94436	VJW	EET ORL	06/05/24 22:29
Total/NA	Analysis	SM 2540C		1	93061	SM	EET ORL	05/29/24 10:11

Lab Sample ID: 670-40479-10

Matrix: Water

Client Sample ID: TW-7

Date Collected: 05/23/24 15:50 Date Received: 05/24/24 06:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	93447	JFL	EET ORL	05/31/24 16:44
Total/NA	Analysis	300.0		1	92534	YGS	EET ORL	05/24/24 21:41
Total/NA	Analysis	300.0		1	92535	YGS	EET ORL	05/24/24 21:41
Total Recoverable	Prep	200.7			92595	JR	EET ORL	05/24/24 10:41
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:48
Total Recoverable	Prep	200.8			92596	JR	EET ORL	05/24/24 10:43
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:50
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 14:02
Total/NA	Analysis	350.1		2	94270	VJW	EET ORL	06/05/24 17:45
Total/NA	Analysis	SM 2540C		1	93061	SM	EET ORL	05/29/24 10:11

Client Sample ID: TW-8

Date Collected: 05/23/24 14:40 Date Received: 05/24/24 06:40 Lab Sample ID: 670-40479-11

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	93447	JFL	EET ORL	05/31/24 17:02
Total/NA	Analysis	300.0		10	92534	YGS	EET ORL	05/24/24 18:02

Eurofins Orlando

Page 65 of 72

1

5

6

8

10

12

14

1

Lab Chronicle

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Client Sample ID: TW-8

Date Received: 05/24/24 06:40

Lab Sample ID: 670-40479-11 Date Collected: 05/23/24 14:40

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor **Number Analyst** Lab or Analyzed 300.0 05/24/24 18:02 Total/NA Analysis 10 92535 YGS EET ORL Total Recoverable Prep 200.7 92595 JR **EET ORL** 05/24/24 10:41 Total Recoverable Analysis 200.7 Rev 4.4 92791 AS **EET ORL** 05/24/24 17:51 1 200.8 **EET ORL** 05/24/24 10:43 Total Recoverable Prep 92596 JR 200.8 Total Recoverable Analysis 1 93026 EV EET ORL 05/28/24 17:52 245.1 Total/NA Prep 92585 EB **EET ORL** 05/24/24 09:59 Total/NA Analysis 245.1 92657 EB **EET ORL** 05/24/24 14:10 1 EET ORL Total/NA Analysis 350.1 10 94270 VJW 06/05/24 19:45 Total/NA Analysis SM 2540C 93061 SM **EET ORL** 05/29/24 10:11 1

Client Sample ID: TW-11 Lab Sample ID: 670-40479-12 Date Collected: 05/23/24 14:15 **Matrix: Water** Date Received: 05/24/24 06:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	93447	JFL	EET ORL	05/31/24 17:21
Total/NA	Analysis	300.0		10	92534	YGS	EET ORL	05/24/24 17:45
Total/NA	Analysis	300.0		10	92535	YGS	EET ORL	05/24/24 17:45
Total Recoverable	Prep	200.7			92595	JR	EET ORL	05/24/24 10:41
Total Recoverable	Analysis	200.7 Rev 4.4		1	92791	AS	EET ORL	05/24/24 17:53
Total Recoverable	Prep	200.8			92596	JR	EET ORL	05/24/24 10:43
Total Recoverable	Analysis	200.8		1	93026	EV	EET ORL	05/28/24 17:54
Total/NA	Prep	245.1			92585	EB	EET ORL	05/24/24 09:59
Total/NA	Analysis	245.1		1	92657	EB	EET ORL	05/24/24 14:11
Total/NA	Analysis	350.1		20	94270	VJW	EET ORL	06/05/24 19:46
Total/NA	Analysis	SM 2540C		1	93077	SM	EET ORL	05/29/24 11:05

Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

Accreditation/Certification Summary

Client: Dominion, Inc. Job ID: 670-40479-1

Project/Site: 1503.01

Laboratory: Eurofins Orlando

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E83018	06-30-24

Method Summary

Client: Dominion, Inc. Job ID: 670-40479-1 Project/Site: 1503.01

Method	Method Description	Protocol	Laboratory
3260D	Volatile Organic Compounds by GC/MS	SW846	EET ORL
300.0	Anions, Ion Chromatography	EPA	EET ORL
200.7 Rev 4.4	Metals (ICP)	EPA	EET ORL
00.8	Metals (ICP/MS)	EPA	EET ORL
45.1	Mercury (CVAA)	EPA	EET ORL
50.1	Nitrogen, Ammonia	EPA	EET ORL
M 2540C	Solids, Total Dissolved (TDS)	SM	EET ORL
00.7	Preparation, Total Recoverable Metals	EPA	EET ORL
8.00	Preparation, Total Recoverable Metals	EPA	EET ORL
45.1	Preparation, Mercury	EPA	EET ORL
030C	Purge and Trap	SW846	EET ORL

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

Sample Summary

Client: Dominion, Inc.

Project/Site: 1503.01

Job ID: 670-40479-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-40479-1	MW-1R	Water	05/23/24 11:15	05/24/24 06:40
670-40479-2	MW-2	Water	05/23/24 13:00	05/24/24 06:40
670-40479-3	MW-3R	Water	05/23/24 13:50	05/24/24 06:40
670-40479-4	MW-4	Water	05/23/24 15:30	05/24/24 06:40
670-40479-5	CW-4	Water	05/23/24 15:05	05/24/24 06:40
670-40479-6	MW-5	Water	05/23/24 13:25	05/24/24 06:40
670-40479-7	MW-6	Water	05/23/24 11:40	05/24/24 06:40
670-40479-8	MW-7	Water	05/23/24 12:10	05/24/24 06:40
670-40479-9	MW-8	Water	05/23/24 12:35	05/24/24 06:40
670-40479-10	TW-7	Water	05/23/24 15:50	05/24/24 06:40
670-40479-11	TW-8	Water	05/23/24 14:40	05/24/24 06:40
670-40479-12	TW-11	Water	05/23/24 14:15	05/24/24 06:40

Ω

Eurofins Jacksonville 8021-6 Philips Highway eurofins **Chain of Custody Record** Jacksonville, FL 32256 **Environment Testing** Phone (904) 296-3007 Phone (904) 296-6210 Lab PM: Carrier Tracking No(s): White, William B Client Information 762-4429-653.1 Client Contact: State of Origin: Mr. Paul Laymon William.White@et.eurofinsus.com Company PWSID: Dominion, Inc. **Analysis Requested** Address: Due Date Requested: **Preservation Codes:** 3776 Cathedral Oak Place N S - H2SO4 N - None TAT Requested (days): D - HNO3 Jacksonville A - HCL State, Zip: Compliance Project: △ Yes △ No FL, 32217 245.1 -Phone: PO#: 904-783-4279(Tel) Purchase Order not required 200.8 - AI As Cd Cr Pb, - Nitrate Perform MS/MSD (Yes or No) playmon@dominiongeo.com Total Number of containers Project Name Project #: 300 1503.01 76200319 8260D - TCL List VOCs Other: Matrix Sample Type S=solid, O=waste/oil. (C=comp, Sample Sample Date Sample Identification Time G=grab) BT=Tissue, A=Air Special Instructions/Note: Preservation Code: MW-1R Х Х G Water Х X Х MW-2 G Water Х Х Х Х Х MW-3R G Water Х Х Х Х Х MW-4 Х Х G Water Х Х X CW-4 Х Х Water Х Х X MW-5 Х Х G Water X Х Х MW-6 G Х Х Water X X Х MW-7 G Water Х Х Х Х Х MW-8 G Х Х Х Х Water X TW-7 G Water Х Х Х Х Х TW-8 Х Х Water

Possible Hazard Identification

Custody Seals Intact:

Δ Yes Δ No

Deliverable Requested: I, II, III, IV, Other (specify)

Custody Seal No.:

Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Archive For Months

Page 70 of 72 # 2 3.4

Cooler Temperature(s) °C and Other Remarks:

Return To Client

Received by:

Time:

Special Instructions/QC Requirements:

Disposal By Lab

Method of Shipme

on Ire

Yer: 04/02/2024 6/7/2024

Company

Eurofins Jacksonville																			
8021-6 Philips Highway	CL	nain c	of Cristad	v De		rd										100	eurofins		
Jacksonville, FL 32256		iain g	of Gustody	y Ke	; CO	ru												Environmen	nt Testing
Phone (904) 296-3007 Phone (904) 296-6210	/ 1	1																	
	Sampler:	1		Lab PM:	1						C	arrier Trac	cking No	o(s):		CO	OC No:		
Client Information	11/1	/_	/	White,	, Willia	ım B										762	2-4429-653.1		
Client Contact: Mr. Paul Laymon	Phone:			E-Mail: William	n.Whit	te@et	t.eurc	ofinsus	s.cor	m	Sta	ate of Ori	gin:			Pag	ge: 222		
Company:		I	PWSID:						_							Job	,#: U		
Dominion, Inc.	T							/	Ana	lysis	Requ	estea				<u>Ļ</u>			
Address: 3776 Cathedral Oak Place N	Due Date Requested:			7	1										5	Pre S -	eservation Codes: H2SO4	•	
City:	TAT Requested (days)	1:			2										1	N - I	None		
Jacksonville					2										13		HNO3 HCL		
State, Zip:					133			- Hg							37	A	. IOE		
FL, 32217	Compliance Project: A Yes A No				Sug-			=							3	8			
Phone: 904-783-4279(Tel)	PO #: Purchase Order no	at requires	_	17	200 A			245.1							18	â			
904-763-4279(181) Email:	WO#:		0			ď.	و						18	20					
playmon@dominiongeo.com	VVC #.			5	0 0			ວັ	itra	Nitrate									
Project Name:	Project #:	200	S 2		Solids	ပို့							containers	<u>ē</u>					
1503.01	76200319	9	88	1	o p	Ž .	300	36					nta	2					
Site:	SSOW#:			î		z .	Dissolved	200.8 - AI As Cd Cr ist VOCs	Sulfate.	ate,							her:		
	<u> </u>				MSD	ia a	Jiss	200.	, i	ing					lo l				
			Sample Mate	rix g	S S	DE .	ta	200.7 - Fe Na, 200.8 - A 8260D - TCL List VOCs	ئا ا ئا ا	8					Total Number	2			
			Type (w=wa		E	Ammo	5	F 5	· P	<u> </u>					12	إ			
	s	Sample	(C=comp, O=wash	te/oil.			2540C - Total	200.7 - Fe 8260D - TC	300 - Chloride	١					4	5			
Sample Identification	Sample Date	Time	G=grab) BT=Tissue			350.1	55	\$ S	å þ	<u> </u>					۴	2	Special Instr	/uctions/No	ote:
CANAL SHARE THE PROPERTY OF THE PARTY OF THE PARTY.		> <	Preservation Co	ode:	W	SN	N C	D A	N	A 30		西 罗斯	1		X			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9, 25, 60
TW-11	5/23/20/	11/15	Wat	ter	T	VI	11	VV	M					T	3	6			
10-11	1017	7/2	17	-	11	1	*	A	4	A-	++	+	\rightarrow	++		100			
	/						11								100	3			
					\top	\Box	+	\top			1			11	(E)	13			
					+	-	+	-	+	-	4	+	\vdash	+	100				
					1		\top	+	+	+	++	+		1	9				
				\rightarrow	1	_	_	\perp	\bot		\bot	\perp	\vdash	\rightarrow					
															3				
					+		+	+	+	+	++	+	\vdash	++	- 8	-			
					\perp				\perp						20	A.			
															8				
		-+		-	+-+	+	+	+	+	+	++	+-	-	++	- 10	-			
				- 1											1				
					T										200				
				-+	+-+	-	+	+	+	+	++	+	+	++	- 10				
Possible Hazard Identification																	longer than 1 mo		-
Non-Hazard Flammable Skin Irritant Pois	on B Unknow	" \square_R	Radiological			□ _{Rei}	tum '	To Clie	ient		Dis _i	nosal E	lv Lab		\supset_{Arc}	chive	For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)			g		Spe	cial In	nstruc	ctions/	/QC	Requir	rements	5:	<i></i>				. 0.	William	
Empty Kit Reinquisheetsy:	, Da	ite:		T	Time:				7			Metho	od of Sh	nipment:					
Relinquished by	Date/Time:	, ,	1 /18 Company	у	1	Receive	ed by:				<	7	7 [Date/Time:		/	C	ompany	
ENTI NO	1: 11/1/11/11	1 1	442		9		1	$\stackrel{\frown}{=}$			-	3			23/	127	1 16:45	Company EET	-
Relingstyles H. J. H.	Date/finde:	1. 1-	710 Company	121	-	Receive	ed by:					1	1	Date/Time:	211	2	4 0640 C	Company	
Relinquished by	10 Date 100 Company 1100 ENG																		
relinquisnee by	Date Time:		Company	у.	ľ	Receive	ea by.							Date/Time:				Company	
Custody Seals Intact: Custody Seal No.:					-	Cooler	Temn	arature	o'(e) °C	and Ot	her Rema	rke:							-
A Yes A No					ľ	+	1	E-	10	2	ther Rema	1	m	1 -	0				

Page 71 of 72# 2 3.4 °C ary

Ver: 04/02/2024 6/7/2024

State of Florida, Department of Environmental Protection **GROUNDWATER SAMPLING LOG**

SITE NAME:	SITE SITE NAME: Florence C&D LOCATION: Gainesville, FL											
	NO: MW-1R			SAMPL	E ID: MW				_	DATE: 5/2	13/211	
					PUR	GING DA	ATA				407	
WELL	ΓER (in): 2		TOTAL	. WELL I (ft): 39.5			ATIC D		16.56	WELL	ITY (gal/ft): 0	116
1 WELL	VOLUME (gal)	= (TOTAL WE	LL DEPTH	– DEPTH T	O WATER	R) X WELL (CAPACI	TY =	20.70	OAI AOI	iii (gai/it). O	. 10
		= (39.5 -)	X .16 = :	set in scree	n = 1.6							
PURGE	: DD: peristaltic		•	PURGE INITIATEI		100	PURG ENDE	E AT.	1115	TOTAL	VOL. Z ED (gal):)
WIETTIC	VOLUME	CUMUL.	PURGE	DEPTH	7	1			DISSOLVED	·		
TIME	PURGED (gal)	VOLUME PURGED (gal)	RATE (gpm)	TO WATER (ft)	PH	TEMP.	CON (µmh		OXYGEN (mg/L)	TURBIDITY (NTUs)	COLOR	ODOR
1110	, 2	2	7	21	6.2	2)4	790	2 1	46,72	-1	0/5	16MC
111	1 1	2.6	10	22	, s s	**	80	9	25,6	5		~
7 (1)	5 .4	3	٧	27	11	۱	8)			5	~	٠.
	'											
WELL (WELL CAPACITY (Gallons per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88											
SAMPL	SAMPLED BY (PRINT) / Paul Laymon SAMPLER(S) SIGNATURE(S)											
	ATION Dominio					Q10,1	,	`	` '			
SAMPL	ING DD(S): peristalti	c/stopped tubin	ıa			SAMPLING NITIATED A	т. <i>J</i>	115	-	SAMPLING ENDED AT:	1128	
	DECONTAMINA		/ <u>N</u>	FIEL	.D-FILTEF		Y	<u>N</u>		DUPLICATE:	Y	<u>N</u>
	SAMPLE CON SPECIFICA			S/	AMPLE PF	RESERVATI	ON			INTENDE	O ANALYSIS	
NO.	MATERIAL CODE	VOLUME	PRE	SERVATIV USED		OTAL VOLU	I	FINAL pH	L		METHOD	
3	CG	40ml		HCI						60	1/602	
1	PE	0.5 L		-							NH3, SO4	
1	PE	0.25 L		H2SO4							IO3	
1	PE	0.5 L		HNO3						Al, Fe, Na, As	s, Cd Cr, Pb,	Hg
REMAF	REMARKS: 1											
	个口	cit br	2 3 101	85	in	/ Th.	9					
MATER	IAL CODES:	AG = AMBER (G = CLEAF	R GLASS;	PE = POL	YETHY	LENE;	O = OTHER	(SPECIFY)		

State of Florida, Department of Environmental Protection **GROUNDWATER SAMPLING LOG**

SITE

SITE

NAME:	Florence C&D					LOCAT	ION: G	Sainesvill	e, FL			, ,						
WELL N	O: MW-2			SAMPL	E ID: M	W-2					DATE: 5/	WELL CAPACITY (gal/ft): 0.16 TOTAL VOL. PURGED (gal): RBIDITY NTUS) COLOR ODOR F A SX C APLING DED AT: TOTAL VOL. PURGED (gal): A SX C APLING DED AT: TOTAL VOL. PURGED (gal): A SX C APLING DED AT: TOTAL VOL. PURGED (gal): A SX C APLING DED AT: TOTAL VOL. PURGED (gal): A SX C APLING DED AT: TOTAL VOL. PURGED (gal): A SX C APLING DED AT: TOTAL VOL. PURGED (gal): TOTAL VOL. PURGED (gal): A SX C APLING DED AT: TOTAL VOL. PURGED (gal): TOTAL VOL. PURGED (gal): TOTAL VOL. PURGED (gal): TOTAL VOL. PURGED (gal): TOTAL VOL. PURGED (gal): TOTAL VOL. TOT						
				'	PU	RGING	DAT	A			- 12	707						
WELL	ER (in): 2		TOTAL	WELL (ft): 26.5				IC DEPT ATER (ft		13		TV (gal/ft): 0	16					
	VOLUME (gal)	= (TOTAL WE	LL DEPTH	– DEPTH T	O WAT	ER) X WE				'/_/	OAI ACI	TT (gai/it). 0	.10					
		= (26.5 –) X .16 =															
PURGE		(20.0	<i>γ</i> χ .10	PURGE	- 1	2115		URGE		21								
METHO	D: peristaltic	CUMUL.	PURGE	INITIATEI DEPTH	D AT: /	073	EI	NDED A	<u> </u>	/ L	/ // PURGI	ED (gal):						
TIME	PURGED (gal)	VOLUME PURGED (gal)	RATE (gpm)	TO WATER (ft)	PH	TEM (° 0		COND. μmhos)	OX	OLVED YGEN ng/L)	TURBIDITY (NTUs)	COLOR	ODOR					
125	5 2	2	,2	12	59	D) 2)	4 2	727	1/	5	1	()	r MC					
1250	, .	2.le	,7	13 501 21.5 " 1.3							ſ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 						
130		4	.2								,		٠,					
)	-	/									-		•					
WELL C	APACITY (Gal	lons per Foot):	0.75" = 0.0)2: 1" = 0.	04: 1.2:	5" = 0.06:	2" = 0	.16: 3" =	= 0.37:	4" = 0.65		[" = 5.88					
						/PLING			,		, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,						
	ED BY (PRINT)		า			SAMPLE	R(S) S	IGNATU	RE(S)									
AFFILIA	TION Dominio	n, inc.				(M)-	,											
SAMPLI	NC					SAMPLII	- NC		_		CAMPLING							
	D(S): peristalti	c/stopped tubin	g			INITIATE			5 O	\vee	ENDED AT:	130	? <u>5</u>					
FIELD D	ECONTAMINA	ATION:	′ <u>N</u>	FIEL	D-FILTE	ERED:	Υ	<u>N</u>			DUPLICATE:	Υ	<u>N</u>					
	SAMPLE CON			SA	AMPLE I	PRESERV	/ATION											
NO	SPECIFICA MATERIAL		PRE	SERVATIV	Έ	TOTAL VO	OLUME	FI	NAL									
NO.	CODE CG	VOLUME 40ml		USED	AD	DED IN F	IELD (n	nL)	Н		601	/602						
3	PE	0.5 L		HCI														
1	PE	0.5 L 0.25 L		- H2SO4														
·													la					
1	PE	0.5 L		HNO3							AI, FE, Na, AS	, ou oi, Pb, i	ıy					
DEMA	140																	
REMAR	KS:																	
MATER	IAL CODES:	AG = AMBER (GLASS: C	G = CLEAF	R GLASS	S; PE = 1	POLYE	THYLEN	E; O	= OTHER	R (SPECIFY)							
											ontor 62 4	CO F A C						

State of Florida, Department of Environmental Protection **GROUNDWATER SAMPLING LOG**

SITE NAME:	Florence C&	D				SITE	ON: Gaine	sville. FL										
	NO: MW-3R			SAMPLE	E ID: MV			,	TOTAL VOL. PURGED (gal):									
					PUR	GING D	ATA			10 5/0	7							
WELL			TOTAL W	CII		- C	TATIC DEP	TU	\\/E									
DIAME.	ΓΕR (in): 2		DEPTH (f	t): 36.5		Te	O WATER (ft): 15.00	CAPA		t): 0.16							
1 WELL	. VOLUME (g	al) = (TOTAL	WELL DE	PTH – DEP	TH TO W	VATER) X	WELL CAP	ACITY =										
		= (36.5-) X .16 =	tube in ce		creen = 1.			TOTAL VOL									
PURGE METHO	D: peristaltio			INITIATE AT: / 2	335	ENDED	1/)	5D										
TIME	VOLUME PURGED (gal)	CUMUL. VOLUME PURGED (gal)	PURGE RATE (gpm)	DEPTH TO WATER (ft)	PH	TEMP.	COND. (µmhos)	DISSOLVED OXYGEN (mg/L)		COLOR	ODOR							
1245	7	1	, 2		LeLel	23\$	174)	25	2	1/5	Suller							
1245	ile	2.6	.2		ColoH	,,	1749	1.4			7							
1711	.4	3	6		15	23.	INEN	1.0	1,	۹.	~							
1750			. 0			9 /	1/100	'										
\A/ELL (NADACITY (C	-U	-4\- 0.75"	- 0.00. 4"	- 0.04:	1 05" - 0	00. 0" - 0	10. 2" - 0.27.	4" - 0 CF. F" -	1.00. 0" -	4.47							
12" = 5.		allons per Foo	DI). U.75	- 0.02, I				10, 3 – 0.37,	4 - 0.00, 5 -	1.02, 6 -	1.47,							
					SAME	PLING I	DATA											
	ED BY (PRINATION Domin	IT) / Paul Lay	mon	SAMPLER	S) SIGN	ATURE(S)												
741120	Wilow Bollin	11011, 1110.		Q10,7														
SAMPL				SAMPLING			1350			135	-5-							
FIELD I	DD(S): perista DECONTAMII	altic/stopped to NATION:		INITIATED		· N	1 220		ENDED AT: DUPLICATE:	1 J Z	N							
Y	<u>N</u> AMPLE CON		FIELD.	-FILTERED:		-	(ATION:		DUPLICATE:	Y	N							
	SPECIFICA MATERI		DRES	ERVATIV		PRESERY AL VOLUI		FINAL		DED ANALY								
NO.	AL	VOLUME		E		O IN FIELD		pH	AND/0	OR METHO	D							
3	CODE CG	40ml	_	ISED HCl						601/602								
1	PE	0.5 L		-					Cl, TI	OS, NH3, SO	14							
1	PE	0.25 L	Н	2SO4						NO3								
1	PE	0.5 L	F	INO3					Al, Fe, Na,	, As, Cd Cr, I	Pb, Hg							
DENAAF	DIC. DTM:	MM 2 :- 46 0	۰															
		n MW-3 is ,49.€	12	-Let														
MATER	IAL CODES:	AG = AMBE	R GLASS	s; CG = Cl	EAR GL	.ASS; PE	E = POLYET	THYLENE; O=	OTHER (SPE	CIFY)								

SITE NAME: Florence C&D													
WELL NO: MW-4		SAMPLE ID:	•			ı	DATE: 8	5/22	Ͻ Ϳ [
		F	PURGING	DATA					7				
WELL TUE DIAMETER (inches): 2 DIAI	NG IETER (inches): 3		CREEN INTERV 21.2 feet to 36.		STATIC DE	PTH R (feet):013	OI OI	JRGE PUMP T' R BAILER: PP	/PE				
WELL VOLUME PURGE: 1 WELL (only fill out if applicable)	OLUME = (TOTA	L WELL DEPTH	 STATIC DEF 	PTH TO W	ATER) X	WELL CAPACI	ГҮ						
EQUIPMENT VOLUME PURGE: 1 E	= (36. QUIPMENT VOL. =	.2 feet – feet = PUMP VOLUME	t) X 0.16 ga + (TUBING CA	llons/foot =	= Tube Mid- X TU	Screen = 1.6 g BING LENGTH)	allons + FLOW C	ELL VOLUME					
(only fill out if applicable)		= gallons	`	gallons/fo		feet)		gallons	= gallons				
INITIAL PUMP OR TUBING DEPTH IN WELL (feet):	FINAL PUMF DEPTH IN W	P OR TUBING /ELL (feet):	PU INI	RGING TIATED A	t:)5/5	PURGING ENDED AT:)53	TOTAL VOL					
TIME VOLUME VOLUM VOLUM PURGED PURGE (gallons) (gallon	E PURGE D RATE	WATER (sta	pH andard inits)	P. (cir β) μr	COND. rcle units) mhos/cm r µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBID (NTUs						
1575 7 7	·7	12 le	61 23.	3 8	2069	2.5)	Cr	(x1/1/60				
1526 le 2.0	2	7 7	169	7	069	2_	1		/<				
1530 .4 3	17	13 10	iley 23	57	207/	1,5	H		7				
WELL CAPACITY (Gallons Per Foot	MELL CARACITY (Collago Por Each), 0.75" = 0.02, 4" = 0.04, 4.25" = 0.06, 2" = 0.45, 2" = 0.27, 4" = 0.07, 5" = 4.47, 4.00, 5"												
TUBING INSIDE DIA. CAPACITY (G	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016												
PURGING EQUIPMENT CODES:	B = Bailer; BI	P = Bladder Pump	AMPLING		mersible Pum	ip; PP = Pe	ristaltic Pu	mp; O = O	ther (Specify)				
SAMPLED BY (PRINT) / AFFILIATIO Paul Laymon/Dominion, Inc.	l: S	SAMPLER(S) SIG		, 5 , (1,	•				_				
Faul Laymon/Dominion, inc.		AlQI				SAMPLING INITIATED AT	153	SAMPLIN ENDED A					
PUMP OR TUBING DEPTH IN WELL (feet):		TUBING MATERIAL CODE:	:			FILTERED: Y	N be:	FILTER S	IZE: μm				
, ,	JMP Y <u>N</u>		JBING Y	N (replac		DUPLICATE:	Υ	<u>N</u>					
SAMPLE CONTAINER SPECIF			ESERVATION (i			INTENDE ANALYSIS AI		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE				
SAMPLE # MATERIAL ID CODE CONTAINERS CODE	VOLUME F	PRESERVATIVE USED	TOTAL \ ADDED IN FIE		FINAL pH	METHO		CODE	(mL per minute)				
1 PE	0.5 L	-				TDS,SO4,	CI, N						
1 PE	0.5 L	HNO3				Metals							
3 CG	40 ml	HCL				601/60	2						
REMARKS:			1										
MATERIAL CODES: AG = Amb S = Silicor SAMPLING EQUIPMENT CODES:	e; T = Teflon;	Clear Glass; H O = Other (Specifough) Peristaltic P	• /	nsity Polye Bailer;	ethylene; l	LDPE = Low De		thylene; PP	= Polypropylene;				

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	orence C&D				SIT	E CATION: Gai	nesville	ı Fl				,	
WELL NO				SAMP	LE ID: CW-4	CATION. Gai	Hesville	5, I ∟		DATE: Z	=/23	124	l
WELLING	. 011-4			O/ tivii		ING DA	ГЛ			D/(12. 2	010 0	10 1	
WELL		TUBIN	IC .	1 10	/ELL SCREEN I			TATIC DE	EDTH 10	00	PURGE PU	MD TVI	DE
	R (inches): 2	-	TER (inches)		EPTH: 30 feet	—		O WATER	4' /	1111	OR BAILER		_
	LUME PURGE: it if applicable)	1 WELL VO	DLUME = (TO	TAL WELL D	EPTH – STAT	TIC DEPTH TO	O WATE	ER) X	WELL CAPAC	CITY			
` •	,,		= (40 feet - r	eet) X 0.16	gallons/foot =	Tube	Mid-Scree	en = 1.6 gallo	ons			
	NT VOLUME PO it if applicable)	URGE: 1 EQ	UIPMENT VO	L. = PUMP V	OLUME + (TUBI	ING CAPACII	Υ)	X IUI	BING LENGTE	1) + FLOW	CELL VOL	UME	
				=	gallons + (ns/foot)	XX	fee	t) +		llons =	
	JMP OR TUBIN WELL (feet):	8-25		MP OR TUBI I WELL (feet)		PURGING		45D	PURGING ENDED AT	150		L VOLU SED (ga	
	()	CUMUL.	1	DEPTH			COI	ND.	DISSOLVED		1 1 2 1 1	(3-	
TIME	VOLUME PURGED	VOLUME	PURGE RATE	ТО	pH (standard	TEMP.	(circle	, ,	OXYGEN (circle units)	TURBI	I	COLOR	
	(gallons)	PURGED (gallons)	(gpm)	WATER (feet)	units)	(°C)	μmho <u>or</u> μ		mg/L <u>or</u> % saturation	(NTI	JS) (0	lescribe	e) (describe)
1517	2 2	ð	.2	13	40/01	22.10	195	3	<u> ろい</u>	رده ا	3 /	-/-	gre tur
150	3 . Le	2.4	1.2	14	10/04	22 /2	cala	.Co	2.1/2	3	,	- <i>(</i>	**
150	,4	3	.7	14	1275	22%	10,11	WAR .	2.4	2		٠.	>/
120	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		' / -	<u> </u>		114	e a -	/ 	•			
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gall /Ft): 1/8" = 0.0006: 3/16" = 0.0014: 1/4" = 0.0026: 5/16" = 0.004: 3/8" = 0.006: 1/2" = 0.010: 5/8" = 0.016												
	TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												
					SAMPI	LING DA	TA						
	BY (PRINT) / A			SAMPLER((S) SIGNATURE	(S):			OAMBUNO.		044	451.1516	
l au Layiii	ion/Bominion, in			010-1					SAMPLING INITIATED A	AT: 156		MPLING DED AT	/1
PUMP OR	TUDING			TUBING				בובו ה ו	TEDED: \				
-	WELL (feet):			MATERIAL	. CODE:				FILTERED: \ n Equipment T		FILI	ER SIZ	ĽΕ: μm
FIELD DE	CONTAMINATION	ON: PU	MP Y	<u> </u>	TUBING	Y <u>N</u> (re	olaced)		DUPLICATE	:: Y	<u>N</u>		
SAM	PLE CONTAINE	ER SPECIFIC	ATION	SAMP	LE PRESERVA	TION (includir	ng wet i	ce)	INTENI		SAMPLII		SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED		OTAL VOL D IN FIELD (m		FINAL pH	ANALYSIS A METH		EQUIPME CODE		FLOW RATE (mL per minute)
	3	CG	40ml	HCI		<i>-</i> (,	P	601/6	02			
	1	PE	0.5 L	-					CI,TDS,NC	D3,SO4			
	1	PE	0.5 L	HNO	3				Meta	ls			
REMARKS	S:												
MATERIA	L CODES:	AG = Amber S = Silicone;	- , -	Clear GlassO = Other		ligh Density P	oiyethyl	iene; I	LDPE = Low D	ensity Poly	yethylene;	PP =	Polypropylene;
CAMPLIN	G EQUIPMENT		APP = After (B = Bailer;	ВР	e Bladde	er Pump; E	SP = Elec	tric Submer	sible Pu	ump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

State of Florida, Department of Environmental Protection **GROUNDWATER SAMPLING LOG**

SITE NAME:	Florence C&D					SITE LOCATION	: Gaine	sville	. FL				
	NO: MW-5			SAMPL	E ID: M				,	DATE: 5	22/21/	,	
					PUI	RGING DA	TA			76	- 1/07		
WELL	ΓER (in): 2		TOTAL	. WELL I (ft): 18.5			ATIC D WATE			WELL	ITY (gal/ft): 0	16	
	VOLUME (gal)) = (TOTAL WE			O WATE				. / . [[CAFAC	iii (gai/it). U	7. 10	
		= (18.51/2)>	< .16 = 2a	9									
PURGE	DD: peristaltic	, , , , , , , , , , , , , , , , , , ,		PURGE INITIATE	D AT: /	131D	PURG ENDE		. 137		L VOL. ED (gal): 4		
WETTIC	VOLUME	CUMUL.	PURGE	DEPTH					DISSOLVED		(gai). +		
TIME	PURGED (gal)	VOLUME PURGED (gal)	RATE (gpm)	TO WATER (ft)	PH	TEMP. (°C)	CON (µmh		OXYGEN (mg/L)	TURBIDITY (NTUs)	COLOR	ODOR	
13/A	25	2,5	0.25		5162	5 21.8	25	8	2.4	2	(15	Nove	
137	3 .75	3,25			3 (le	le "-	25		£ /	(10	٤	
137	5 5	3.15	te		• 6		25	5	21	رر	=	:	
7.00													
								_					
\\/EII (lone per Feet):	0.75" - 0.1	02: 1" - 0	04: 1.2	5" = 0.06: 2"	- 0.16:	2" –	0.37: 4" = 0.61	5: 5" - 1 02:	6" = 1 47: 10)" – 5 99	
VVLLL	LL CAPACITY (Gallons per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 SAMPLING DATA												
	MPLED BY (PRINT) / Paul Laymon FILIATION Dominion, Inc. SAMPLER(S) SIGNATURE(S)												
AFFILIA	ATION Dominio	n, Inc.				Q10-1							
SAMPL	ING					SAMPLING		١ - >	, ne	SAMPLING	/		
l	D(S): peristalti					INITIATED A	T:	/_5	77	ENDED AT:	1.5	70	
FIELD I	DECONTAMINA		Y <u>N</u>	FIEL	_D-FILTE	ERED:	Y	<u>N</u>		DUPLICATE:	Y	<u>N</u>	
	SAMPLE CON SPECIFICA			S	AMPLE F	PRESERVATI	ON			INTENDE	D ANALYSIS		
NO.	MATERIAL CODE	VOLUME	PRE	SERVATIV USED		TOTAL VOLU DED IN FIELD		FIN pl		AND/OF	RMETHOD		
3	CG	40ml		HCI	7.0	DED IIV FIELD) (IIIL)	Pi		60	1/602		
1	PE	0.5 L		-						CI, TI	OS, NH3		
1	PE	0.25 L		H2SO4							103		
1	PE	0.5 L		HNO3						Al, Fe, Na, As		Hg	
1	PE	0.25 L		-						5	SO4		
REMAE	RKS:. Insufficien	t water to same	nle										
INCIVICAL	aro modinolen	it water to saill	PiC										
MATER	IAL CODES:	AG = AMBER	GLASS; C	G = CLEA	R GLASS	S; PE = POL	YETHY	LENE	; O = OTHEF	R (SPECIFY)			

SITE NAME: FI	orence C&D					SI	TE OCATION: Ga	inesvil	le Fl					. 1		
WELL NO:				SAM	MPLE ID: 1				.0,			DATE:	Ź	123/2	<u>L)</u>	
					F	URG	SING DA	TA						10 10	/	
WELL		TUBIN			WELL SC	REEN	INTERVAL	- ;	STATIC [13	25		E PUMP TY	/PE	
	R (inches): 2		TER (inches):				et to 26.5 fee		TO WATE		•	/ レグ TY	OR BA	AILER: PP		
	t if applicable)		•				gallons/foot		,							
	NT VOLUME PO	JRGE: 1 EQI	JIPMENT VOI	= PUMF	VOLUME	+ (TUB	ING CAPACI	ГҮ	X TI	UBING I	ENGTH)	+ FLOV	V CELL	VOLUME		
(Only IIII Ou	і ії арріісавіе)			=	gallons	+ (gallo	ns/foot	t X		feet)	+		gallons	=	gallons
	JMP OR TUBIN WELL (feet):	G 21	FINAL PU DEPTH IN			1	PURGIN INITIATE		1125	ENI	RGING DED AT:	1)4/		TOTAL VOL PURGED (g		5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEP TC WAT (fee) ER (sta	pH andard nits)	TEMP. (°C)	(circle µmh	DND. e units) nos/cm μS/cm	OX` (circl mg	OLVED YGEN e units) /L <u>or</u> turation	_	BIDITY TUs)	COLO (describ		ODOR (describe)
1140	7	8	.2	14	be	.75	23.5	100	17	1			3	۲()	-	2000
1143	, te	8·le	1.2	14	Qi	25	22.9	"/)	D	う.	0		3	٠,		٠,
1145 ,4 3 -0 14 6.76 22.8 1120 6.8 2												2				
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016															
	EQUIPMENT O	•	s = Bailer;		der Pump		SP = Electric				PP = Pe				ther (Sp	
					_		LING DA	TA								
	BY (PRINT) / A on/Dominion, In			SAMPLE	ER(S) SIGN	NATURE	E(S):				IPLING IATED AT	r: <i>f</i>)	2/2	SAMPLIN ENDED A		45
PUMP OR DEPTH IN	TUBING WELL (feet):			TUBING MATERI	AL CODE:						RED: Y	N pe:		FILTER S	IZE: _	μm
FIELD DE	CONTAMINATIO	ON: PUN	1P Y <u>1</u>	1	TU	BING	Y <u>N</u> (re	placed	i)	DUF	LICATE:	١	ſ	<u>N</u>		
SAM	PLE CONTAINE	ER SPECIFICA	ATION				TION (includi	ng wet			INTENDI ALYSIS A			MPLING JIPMENT		PLE PUMP W RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME		RVATIVE ED	1	TOTAL VOL D IN FIELD (r	nL)	FINAL pH	AINA	METHO			CODE		per minute)
	3	CG	40ml	Н	CI					-	601/60					
	1	PE	0.5 L		-					CI,	rds,no:					
	1	PE	0.5 L	HN	103						Metals	8				
REMARKS	3:	<u> </u>				I										
MATERIA	L CODES:	AG = Amber S = Silicone; CODES:	Glass; CG T = Teflon; APP = After (T		her (Specif	y)	High Density F		ylene; P = Blado		= Low De			ene; PP		oropylene;
1			RFPP = Rever				SM = Straw							Specify)		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: FIG	orence C&D				SIT	E CATION: Ga	inesville	e Fl			,		
WELL NO:				SAMPLE ID:	•	<u> </u>		,		DATE:	5/23	Al .	
					PURG	ING DA	TA				- 10 5 	<i>O₁</i>	
WELL VO	R (inches): 2 LUME PURGE: t if applicable)		TER (inches): LUME = (TO	WELL S	SCREEN IN : 8.5 feet - STAT	NTERVAL to 23.5 feet IC DEPTH To	S T O WATI	ER) X	R (feet):	<i>D</i>	URGE PUMP R BAILER: PF		
	NT VOLUME PO	JRGE: 1 EQI	JIPMENT VOI	= PUMP VOLUM	E + (TUBII	NG CAPACIT	Y :	X TU	BING LENGTH)	+ FLOW C	CELL VOLUME		
. ,				= gallo	ns + (ns/foot 2	X	feet)	+	gallons		
	JMP OR TUBIN WELL (feet):	G 19		MP OR TUBING WELL (feet):	19	PURGING INITIATE		155	PURGING ENDED AT:	SHU	PURGED		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH standard units)	TEMP. (°C)	,	units) os/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBID (NTU:			
1342	8	2	.2	11 4	2:17	27.	_)7	lele	4,5	2	\mathcal{I}	V 34/11	
1206	· le	2.6	500°	1)	01	02.0	-17	97	4-5	. `)c	
120 19 3 19 11 6011 - 120 61-L1 -c											· F		
WELL CA	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88												
	NSIDE DÌA. CAI EQUIPMENT C	•	Ft.): 1/8" = 0	.0006; 3/16" = 0		1/4" = 0.0026 6P = Electric S	6; 5 /	/16" = 0.0	004; 3/8" = 0		/2" = 0.010;	5/8" = 0.016 Other (Specify)	
FORGING	EQUIPMENT	ODES. E	- Dallel,			ING DA		Sible Full	пр, гг-ге	iistaitic Fu	шір, О-	Other (Specify)	
	BY (PRINT) / A on/Dominion, In			SAMPLER(S) SIG					SAMPLING INITIATED AT	1210	SAMPL ENDED		
PUMP OR DEPTH IN	TUBING WELL (feet):			TUBING MATERIAL COD	E:				FILTERED: Y	N	FILTER	SIZE: μm	
	CONTAMINATIO	ON: PUN	1P Y <u>1</u>	<u>N</u> T	UBING	Y <u>N</u> (re	placed)		DUPLICATE:	Y	<u>N</u>		
	PLE CONTAINE		ATION			ΓΙΟΝ (includi			INTENDI ANALYSIS A		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED		OTAL VOL) IN FIELD (n		FINAL pH	METHO		CODE	(mL per minute)	
	3	CG	40ml	HCI					601/60				
	1	PE	0.5 L	-					CI,TDS,NO				
	1	PE	0.5 L	HNO3					Metals	5			
))	9.84										
REMARKS		3	12.3	7	R	14	9-	.85					
MATERIA	L CODES:	AG = Amber S = Silicone;	Glass; CG T = Teflon;	= Clear Glass; 0 = Other (Spe		igh Density P	olyethy	lene;	LDPE = Low De	nsity Polye	ethylene; P	P = Polypropylene;	
CAMPLIN	G EQUIPMENT		APP = After (T	Through) Peristaltic	Pump;	B = Bailer;		• = Bladde	er Pump; ES Gravitv Drain):		ic Submersible	Pump;	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	orence C&D					SIT	E CATION: Ga	ninoevi	llo El					,
WELL NO:				SA	MPLE ID: N		CATION. G	alliesvi	ile, i L		DATE:	6	123	עב ל
WELL NO.	IVIVV-O			JOA			INC DA	T A			DATE.	ر ا		107
WELL		TUBIN	2		1		ING DA		STATIC D	EDTU /	111	DI IDGE	E PUMP T	VDE
	R (inches): 2		TER (inches):	3/8	DEPTH:					R (feet):	161		ILER: PP	IFE
	UME PURGE:	1 WELL VO	LUME = (TO	TAL WEL	L DEPTH -	- STAT	TIC DEPTH T	O WA	TER) X	WELL CAPA	CITY			
, ,	t if applicable)		= (2	26.5 feet -	feet)	X 0.1	6 gallons/fo	ot = T	ube Mid-S	Screen = 1.6				
	NT VOLUME PO t if applicable)	JRGE: 1 EQI	JIPMENT VOI	= PUMI	P VOLUME	+ (TUBI	ING CAPACI	TY	X TL	JBING LENGTI	H) + FLOW	CELL	VOLUME	
` ,				=	gallons	+ (ns/foo	t X		et) +		gallons	= gallons
	JMP OR TUBIN WELL (feet):	G 2/	FINAL PU DEPTH IN	MP OR T	UBING 2		PURGIN		1221	PURGING ENDED AT			OTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEF TO WAT (fee	Ο Stai	oH ndard nits)	TEMP. (°C)	(circ μml	OND. le units) hos/cm μS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBI (NTL		COLO (describ	
1230	2	7	.2	8	7.	05	23.5	19	89	2.9	Ó	2	(C)r	sulfur
1233	·le	216	1.3	4 8	4.0	99	23.9	1)8	92	2.8	•	`	ı	^
1235	5 ,4	3	6.	8	Leve	<u>}</u>	23.5	10	120	2.8	•	`	٠.	2
1.	,	,			· ·		<u> </u>	, ,						
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016													
PURGING	PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)													
CAMPLED.	DV (DDINE) / A	FEU IATION		0.4451	_		LING DA	ATA						
	BY (PRINT) / A on/Dominion, In			SAMPL	ER(S) SIGN	ATURE	:(8):			SAMPLING			SAMPLIN	G .
				Alli)					INITIATED	AT:123	5	ENDED A	T: 1240
PUMP OR DEPTH IN	TUBING WELL (feet):			TUBING MATER	IAL CODE:					FILTERED: `on Equipment T			FILTER S	IZE: μm
FIELD DEC	CONTAMINATIO	ON: PUN	<u>1</u> Y 91	<u> </u>	TUI	BING	Y <u>N</u> (re	eplace	d)	DUPLICATE	Ξ: Υ		<u>N</u>	
SAMI	PLE CONTAINE	ER SPECIFICA	ATION	SA	MPLE PRE	SERVA [®]	TION (includi	ing we	t ice)	INTEN			//PLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME		RVATIVE SED		OTAL VOL D IN FIELD (I	mL)	FINAL pH	ANALYSIS METH			IPMENT ODE	FLOW RATE (mL per minute)
	3	CG	40ml	F	ICI					601/6	802			
	1	PE	0.5 L		-					CI,TDS,N	O3,SO4			
	1	PE	0.5 L	H	NO3					Meta	als			
REMARKS														
KEWAKKS														
MATERIAI	_ CODES:	AG = Amber S = Silicone;	Glass; CG T = Teflon;	= Clear G	ilass; H E		ligh Density F	Polyeth	nylene;	LDPE = Low [Density Poly	yethyle	ne; PP	= Polypropylene;
SAMPLING	G EQUIPMENT	CODES:	APP = After (7 RFPP = Rever	hrough) F	Peristaltic Pu	ımp;	B = Bailer;		BP = Bladd	er Pump; I Gravitv Drain):	ESP = Elect	tric Sul		Pump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

State of Florida, Department of Environmental Protection **GROUNDWATER SAMPLING LOG**

SITE

SITE

NAME: F	lorence C&D			1		LOCATION	Gaine	sville,	FL					
WELL NO): TW-7			SAMPL	E ID: T	W-7				DATE: 5	123/2	24/		
					PU	RGING DA	TA				10 /			
WELL DIAMETE	ER (in): 1		TOTAL DEPTH	I (ft): 35.0		TO	ATIC DI WATE	R (ft):	10.99	WELL CAPACI	TY (gal/ft): ℓ) .Ke		
1 WELL \	/OLUME (gal)	= (TOTAL WE	LL DEPTH	– DEPTH 1	O WAT	ER) X WELL C	APACI	TY =						
		= (35.0-) X	.04 = TUB	E SET MIC	-SCRE	EN = 0.04								
PURGE METHOD): peristaltic	- ,	DUDOE	PURGE INITIATE	D AT:	1547	PURG ENDE		155	TOTAL PURGE	VOL. ED (gal): (.0		
TIME	VOLUME PURGED (gal)	CUMUL. VOLUME PURGED (gal)	PURGE RATE (gpm)	DEPTH TO WATER (ft)	PH	TEMP.	CON (µmh	ט. ן	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLOR	ODOR		
15/3	.5	-5		13	6.51	0.0	205	7	1,5	3	<)r	& n /us		
1548	13	٠, ٤	۱ ۰(jΫ	4, 9	33.2	26/1	<i>#</i>	1.5	2	•	:		
1559		1.0	,)	14	(0.3	1 -	20		7.27	2		÷		
1)5.	1	1.0	()		1817		1		!					
WELL CA	APACITY (Galle	ons per Foot):	0.75" = 0.0	02; 1" = 0.				3" = 0).37; 4" = 0.65	5; 5" = 1.02; 6	3" = 1.47; 12	2" = 5.88		
CAMPLE	D DV (DDINIT)	/ David annua			SAI	MPLING DA		\	7(0)					
	D BY (PRINT) ION Dominion		n			SAMPLER(S) SIGNA	ATURE	=(5)					
		•				Q10,1								
SAMPLIN METHOD	IG (S): peristaltio	c/stopped tubir	na			SAMPLING INITIATED A	T· /	55	SV	SAMPLING ENDED AT:	153	5		
	ECONTAMINA	•	. y / N	FIFI	D-FII T		··	N		DUPLICATE:	Υ	N		
	SAMPLE CON	ITAINER				PRESERVATION								
NO	SPECIFICA MATERIAL		PRE	SERVATIV	Έ	TOTAL VOLUI	ИΕ	FINA	AL.) ANALYSIS METHOD			
NO.	CODE	VOLUME		USED	ΑI	DDED IN FIELD	(mL)	pН						
DEMA	′0													
REMARK	. 5:													
						S; PE = POL					CO F A O	<u> </u>		
NO	ı⊫: ine a	ipove ao i	iot cons	stitute a	II OT T	ne intorma	tion i	requi	irea by Ch	apter 62-1	ου, Γ.Α.C	·•		

State of Florida, Department of Environmental Protection **GROUNDWATER SAMPLING LOG**

INCIVIL.	riorence Cab			1		LOCA	1011.	Gairies	JVIIIC, I L				. 1
WELL N	O: TW-8			SAMPL	E ID: T	W-8					DATE: 5	23/2	/
					PU	RGING	DAT	ΓΑ		_	/ /	, , ,	,
	ER (in): 1		TOTAL DEPTH	(ft): 35.0			TO V	TIC DE VATEF	R (ft):	6,40) WELL CAPAC	TY (gal/ft): 0).04
1 WELL	VOLUME (gal)	= (TOTAL WE	LL DEPTH	– DEPTH T	O WAT	TER) X WE	ELL CA	PACIT	Y =				
		= (35.0-) X	.04 = TUE)-SCRE	EEN = 0.4							
PURGE METHO	D: peristaltic			PURGE INITIATEI	O AT:	425		PURGE ENDEC		(44)	TOTAL PURG	. VOL. ED (gal):	1,5
TIME	VOLUME PURGED (gal)	CUMUL. VOLUME PURGED (gal)	PURGE RATE (gpm)	DEPTH TO WATER (ft)	PH	TEN		CONI (µmho	D. 0	SSOLVED XYGEN (mg/L)	TURBIDITY (NTUs)	COLOR	ODOR
W35)), ·	,)	10	le:	7 2	3.7	Ildri	2)	\2	3	C)_	sultur
15136	13	1.5	-)]/	1.0	\$ 23	16 1	2	2	-			
144) 2	1.5	(',	11 (1) 225- 11 1/2 1,							2		(
7110	· / · /	1,	' /	-//	Loi l	1	4/	ren	0 /	1 /			
WFII C	_ APACITY (Gall	ons per Foot)	0.75" = 0.0	2. 1" = 0)4· 12	25" = 0.06·	2" = (0 16 [.]	3" = 0.37	4" = 0.65	<u> </u> 5· 5" = 1 02· (5" = 1 47· 12	
		р		_,		MPLINC				,	, , , , , , ,	,	
	D BY (PRINT)		1						TURE(S))			
AFFILIA	TION Dominion	n, Inc.				AQ.	1						
SAMPLI METHO	NG D(S): peristaltio	c/stopped tubin	a			SAMPLI INITIATI			44D		SAMPLING ENDED AT:	1445	,
	ECONTAMINA			FIEL	D-FILT	ERED:	Υ		N		DUPLICATE:	Y	<u>N</u>
	SAMPLE CON				MDIE	PRESER\	/ΔΤΙΩΝ	NI					
	SPECIFICA MATERIAL		PRE	SERVATIV		TOTAL V			FINAL			D ANALYSIS METHOD	
NO.	CODE	VOLUME	I IXL	USED		DDED IN F			pH				
1	PE	0.25 L		HNO3								, Na	
1	PE	0.25 L									SO ₂	, TDS	
REMAR	KS:		1							1			
	AL CODES: /												
NC	TE. The	hovo do r	not cons	tituto al	I of t	ha infa	rmati	ion r	aduira	d by Ch	anter 62-1	60 E A C	•

State of Florida, Department of Environmental Protection **GROUNDWATER SAMPLING LOG**

SITE NAME:	Florence C&	.D				SITE LOCATI	ON: Gaine	sville, FL			
	NO: TW-11			SAMPLE	E ID: TW				DATE:	5/23/	24
					PUR	GING D	ATA		1	- (, , , , , , , , , , , , , , , , , , ,
WELL DIAME 1 WELL	TER (in): 2 - VOLUME (g	al) = (TOTAL		t): 28.1		/ATER) X		ft): /ゲ//	3 WELL CAPA	CITY (gal/f	t): 0.16
PURGE METHO	: DD: peristaltio		() //	PURGE		PURGE ENDED	111	Ø	TOTAL VOL. PURGED (ga		15
TIME	VOLUME PURGED (gal)	CUMUL. VOLUME PURGED (gal)	PURGE RATE (gpm)	DEPTH TO WATER (ft)	PH	TEMP.	COND. (μmhos)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTUs)	COLOR	ODOR
1410	7	7	. 2	IL _e	6.52	72.4	191D	(.)	2]	(/1	Sul tho
1413	le	2.6	6.	16	labol	, ,	1919	1, 1	3	۲۳	*
1915	.4	13	.2	16	brld	72.5	1916	7.1	3	٠,	٦
WELL O	CAPACITY (G	Gallons per Fo	ot): 0.75"	' = 0.02; 1"	= 0.04;	1.25" = 0.0	06; 2" = 0.	16; 3" = 0.37;	4" = 0.65; 5" =	1.02; 6" =	: 1.47;
12" = 5.	88				SAMF	LING [DATA				
	ED BY (PRIN ATION Domir	IT) / Paul Lay nion, Inc.	mon	SAMPLER	(S) SIGNA	ATURE(S)					\
SAMPL		altic/stopped to	ıhina	SAMPLING INITIATED		()	115		SAMPLING ENDED AT:	147	
	DECONTAMI N			-FILTERED:		<u>N</u>	1 / -		DUPLICATE:	Y	<u>N</u>
	AMPLE CON SPECIFICA			(SAMPLE	PRESER\	/ATION				
NO.	MATERI AL CODE	VOLUME		SERVATIV E JSED		AL VOLUI IN FIELD		FINAL pH		DED ANALY OR METHC	
1	PE	0.5 L		-					TDS,	SO4, NH3, 0	Cl
1	PE	0.5 L	I	HNO3						Metals	
1	PE	0.25L	H	H2SO4						NO3	
3	CG	40 ml		HCL					,	volatiles	
REMAR	RKS: '										
MATER	RIAL CODES:	AG = AMBE	R GLASS	S; CG = CI	LEAR GL	ASS: PE	= POLYE	THYLENE; O =	OTHER (SPEC	CIFY)	